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Abstract

The tautological ring of the moduli space of curves is the ring generated
by algebraic cycles of geometric origin. While it has been well-studied, its
structure is not yet completely understood : There is an explicit set of gen-
erators but the set of relations between them is still not known. Recently,
A. Pixton has given a computationally well-tested conjectural description of
this set.

This thesis contains an introduction to the moduli space of curves and
its tautological ring, as well as three papers which provide evidence for the
conjecture of Pixton. The first gives a proof that the elements of Pixton’s
set are actual relations. In cohomology, this result had already previously
been obtained by Pandharipande-Pixton-Zvonkine with an at first sight very
different method of proof.

The second paper notes that the method proof employed in the first pa-
per can actually be interpreted as a careful study of the Givental-Teleman
classification of cohomological field theories, like it is done in the work of
Pandharipande-Pixton-Zvonkine, but in the context of a different example.
The main part of the paper is a comparison of the relations obtained from co-
homological field theories in the examples of the equivariant Gromov-Witten
theory of projective spaces and of Witten’s r-spin class.

The third paper shows that the method of producing tautological rela-
tions by studying the Givental-Teleman classification for any cohomological
field theory will only yield relations inside Pixton’s set. This shows that Pix-
ton’s relations have a universal character and gives further evidence for his
conjecture.
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Résumé

L’anneau tautologique de l’espace de modules des courbes algébriques est
l’anneau engendré par des classes de cycles algébriques construites de façon
géométrique. Tandis qu’il a fait l’objet de très nombreux travaux, sa structure
n’est pas complètement connue. En effet, l’anneau tautologique possède une
partie génératrice mais la totalité de ses relations n’est pas encore connue.
Récemment, A. Pixton a donné une description conjecturale des relations
en question et il est à noter que cette conjecture est computationnellement
vérifiée dans de nombreux cas.

Cette thèse contient une introduction à l’espace de modules des courbes
et à l’anneau tautologique ainsi que trois prépublications concernant les con-
jectures de Pixton. Dans la première prépublication, nous démontrerons que
les éléments de l’ensemble de Pixton sont de vraies relations. En cohomolo-
gie, ce résultat a déjà été obtenu par Pandharipande-Pixton-Zvonkine par
des méthodes à première vue très différentes.

Dans la deuxième prépublication, nous noterons que nos méthodes pour
obtenir des relations sont essentiellement identiques aux méthodes utilisées
par Pandharipande-Pixton-Zvonkine. Comme ces derniers, nous étudions la
classification des théories cohomologiques des champs de Givental-Teleman
à la différence près que nous considérerons des exemples différents. De plus,
nous comparerons les relations obtenues par la théorie cohomologique des
champs dans le cas de la théorie équivariante de Gromov-Witten de l’espace
projectif avec celles obtenues dans le cas de la classe r-spin de Witten.

Dans la troisième prépublication, nous verrons que les relations obtenues
grâce à la classification de Givental-Teleman sont contenues dans l’ensemble
de Pixton et ce pour toute théorie cohomologique des champs. Les relations
de Pixton ont par conséquent un charactère universel, ce qui tend à confirmer
la conjecture du même nom.
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Part I

Introduction

1 Algebraic curves and their moduli

We give a short informal introduction to the moduli space of curves. For
a reference on the subject refer for example to the book [24].

1.1 Smooth curves

Let us consider the problem of classifying smooth (connected) algebraic
curves C of genus g up to isomorphism or equivalently classifying isomor-
phism classes of compact Riemann surfaces of genus g or, also equivalently,
classifying complex structures on a compact, orientable surface of genus g.

For example we could try to find an assignment which maps any isomor-
phism class to a collection of complex numbers, which uniquely determine
the isomorphism class. The image X of such an assignment in complex affine
space would give us a geometric object such that every isomorphism class of
algebraic curves of genus g corresponds to a point on X. We should better
assume that the assignment varies nicely when deforming the curves so that
X does not only record the cardinality of the set of isomorphism classes.

This notion is captured by the definition of a fine moduli scheme. A
scheme Mg is a fine moduli space for the moduli problem of “smooth algebraic
curves of genus g up to isomorphism” if there exists a universal family Cg →
Mg of smooth algebraic curves of genus g over Mg such that for any base
scheme S and any family C → S of smooth algebraic curves of genus g there
exists a map f : S → Mg such that the family C is isomorphic to the pull-
back of the universal family Cg. Taking in this definition S to be a point,
we see that the fiber of Cg over a point of Mg, which corresponds to an
isomorphism class [C] of algebraic curves, is isomorphic to C.

It turns out that such a moduli scheme cannot exist in general. The
main problem is that there exist non-trivial families of algebraic curves such
that each fiber is isomorphic to a fixed algebraic curve with a non-trivial
automorphism group. On the other hand, if one does not restrict one’s
search of a fine moduli space to schemes, for g ≥ 2 one can construct a fine
moduli stack Mg, which is a smooth Deligne-Mumford stack (or also an (in
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general ineffective) orbifold). As a note to the reader unfamiliar with stacks
or orbifolds we need to remark though that the fact that Mg is not a scheme
will not play much of a role in this thesis. Being a Deligne-Mumford stack
means that Mg is still quite close to being a scheme.

A first natural question about the moduli space Mg is its dimension. This
was already answered in 19th century with a parameter count of Riemann:
dimC(Mg) = 3g − 3.

1.2 Compactification

While the moduli space Mg is smooth, it is not proper (compact): It is
easy to construct families of algebraic curves over the projective line, which
degenerate to a singular curve. In order to obtain a compact moduli space,
an idea is to add points to the moduli space corresponding to some of these
singular objects. For this it will first be useful to generalize the moduli
problem in another direction:

For 2g − 2 + n > 0 there exists a smooth Deligne-Mumford stack Mg,n

which is a fine moduli stack for the problem of classifying isomorphism
classes of smooth algebraic curves of genus g together with n pairwise disjoint
markings, labeled (usually) by the set {1, . . . , n}. It has complex dimension
3g − 3 + n.

Next, for the compact moduli space we also need to consider nodal curves,
i.e. algebraic curves such that each point is either smooth or étale locally
looks like a coordinate cross {xy = 0}. Marked curves arise when we consider
the normalization C̃ of C together with the preimages of the nodes. Then the
normalization map C̃ → C can be visualized as gluing the smooth (possibly
disconnected) algebraic curve C̃ along marked points.

Now we can go to the compactification: For 2g − 2 + n > 0 there is a
smooth, proper Deligne-Mumford (fine) moduli stack M g,n of stable, con-
nected nodal curves of arithmetic genus g together with n labeled markings,
which are pairwise disjoint and also disjoint from the nodes. Stability means
that for every nodal curve C and any connected component D of the nor-
malization C̃ the condition 2gD − 2 + nD > 0 should hold, where gD is the
genus of the component and nD is the number of preimages of markings and
nodes on D.

For low values of g and n the space M g,n can be made very concrete. For
example M0,3 is a point because for 3 distinct points on the Riemann sphere
there exists exactly one linear fractional transformation sending them to 0,
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Figure 1: The elements of M0,4 \M0,4

1 2 3 4 1 3 2 4 1 4 2 3

1 and ∞. The moduli space M0,4 is isomorphic to P1: The part where all
four points are distinct is isomorphic to P1 \ {0, 1,∞} since we can map the
first three points to 0, 1 and ∞ and consider the image of the fourth point.
The three missing points of P1 correspond to the three marked nodal curves
illustrated in Figure 1.

By the universal property there exists a universal family Cg,n → M g,n

of stable curves. Here the space Cg,n is called the universal curve. The
markings define n sections for the map Cg,n → M g,n: The ith section sends
the class of a marked curve (C, p1, . . . , pn) to the point pi on the fiber over
(C, p1, . . . , pn).

1.3 Boundary

The moduli space Mg,n is an open subset inside M g,n and it is interesting
to study its boundary M g,n \Mg,n. It turns out to have a very explicit de-
scription in terms of moduli spaces of curves with smaller genus or markings.

Consider any stable nodal curve C together with the map f from its
normalization C̃. From here we can attach discrete data to the moduli point
[C] ∈M g,n by recording for all connected components of C̃, the genus, what
markings lie on it and how the components are glued together. This data
can be collected into what is called a dual graph: We draw a vertex for any
connected component of C̃ and decorate it by the genus. For every node of
C we draw an edge connecting the vertices corresponding to the components
containing the two preimages of the node. Therefore there can be multiple
edges or self-edges. Finally for every marking of C, we draw a labeled half-
edge. A simple example is illustrated in Figure 2.

It is often useful to think of each edge of a dual graph to be glued from two
half-edges. For example, in many formulas we will use the number of auto-
morphisms of the dual graph thought of in this way. For the dual graph with
only one vertex and one loop there is exactly one non-trivial automorphism,
which exchanges the two half-edges of the loop.
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Figure 2: Example of a stable curve and its dual graph

1 2

3
4

1 0 2

1 4 23

The locus in M g,n of curves corresponding to a fixed dual graph is locally
closed and therefore these loci define a stratification of M g,n.

The closure of any stratum is essentially a product of smaller moduli
spaces of curves. More precisely, given a dual graph Γ and for every vertex
v of Γ an element (C, p1, . . . , pnv) ∈ M gv ,nv , where gv is the genus at v and
nv is the number of half-edges (corresponding to nodes and markings) at v,
we can glue the stable curves together along the markings. This works well
in families and we therefore obtain a map

∏

v

M gv ,nv →M g,n.

This map is finite with degree equal to the number of automorphisms of Γ.

Apart from the one-vertex no-loops dual graph corresponding to smooth
curves, the most simple dual graphs correspond to boundary divisors of M g,n.
There are two possibilities: Either the dual graph has one vertex and one
loop or it has two vertices connected by an edge but no loops. The first case
corresponds to the closure of the locus of irreducible curves with a node. In
the second case there are several possibilities how the genus and markings
can be distributed among the two vertices. A generic element of the second
locus is a reducible curve obtained from two smooth curves with genus and
markings according to the graph by gluing along two additional markings.

Using dual graphs we can also define well-known partial compactifications
of Mg,n in M g,n. There is a sequence

Mg,n ⊂M rt
g,n ⊂M ct

g,n ⊂M g,n.

Here, “rt” and “ct” are abbreviations for “rational tails” and “compact type”,
respectively. A stable curve C lies in M rt

g,n if the dual graph of C is a tree,
and one vertex has genus g while all the others have genus zero, i.e. are
rational. A stable curve C is of compact type if its dual graph is a tree or
equivalently when the Jacobian of C is compact.
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Figure 3: Forgetful maps in cases where stabilization is necessary
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1.4 Tautological maps

There is a big collection of canonical maps between moduli spaces of
stable curves, which are called tautological maps.

As we have already seen there are algebraic maps obtained from gluing
curves according to a dual graph. For divisors the gluing maps take the form

M g1,n1+1 ×M g2,n2+1 →M g1+g2,n1+n2 ,

M g−1,n+2 →M g,n,

where in the first case the last markings of two stable curves are glued to-
gether and in the second case the two last markings of a stable curve are glued
together. Any more general gluing map can be constructed by composition
from these two basic types of gluing maps.

There is a second type of tautological map, called forgetful map, of the
form

M g,n+1 →M g,n,

which for most points of M g,n+1 maps a marked curve to the same curve but
with the last marking forgotten. This definition does not work in the case
the marking that needs to be forgotten lies on a Riemann sphere with only 3
special points, i.e. nodes or markings, since after forgetting the marking the
curve would no longer satisfy the stability condition. To fix the definition,
the curve has to be stabilized after the point has been forgotten, i.e. the
unstable components need to be contracted, as illustrated in Figure 1.4.
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2 Definition of the tautological ring

2.1 Tautological classes

As Mumford remarks in [37]:

“Whenever a variety or topological space is defined by some uni-
versal property, one expects that by virtue of its defining prop-
erty, it possesses certain cohomology classes called tautological
classes.”

His main motivating example is the Grassmannian Gr(k, n) of k-planes in
Cn. In this case it is natural to consider the tautological bundle E of Gr(k, n),
which is of rank k. The Chern classes of E define classes in the cohomology
and Chow ring and should be counted as tautological. It happens that for the
Grassmannian that these classes are already enough to generate the complete
cohomology and Chow ring.

With [37], Mumford has started the study of tautological classes in the
rational 1 Chow and cohomology ring of M g. Here the universal object is the
universal curve Cg over M g. Since Cg is not a vector bundle over M g we
cannot directly take Chern classes, however there are natural bundles over
Cg we can use. The tautological classes that Mumford considered are known
as the κ- and λ-classes. We want to define them on M g,n whereas Mumford
had only considered M g.

Over Cg,n we can consider the dualizing sheaf ω relative to the universal
family π : Cg,n → M g,n. We can also consider the log relative dualizing
sheaf ωlog, which is defined from ω by twisting along the divisors D1, . . . , Dn

defined as the images of the n sections s1, . . . , sn of π:

ωlog = ω(D1 + · · ·+Dn).

We can now define

κd := π∗(c1(ωlog)d+1) ∈ Ad(M g,n),

ψi := s∗i (c1(ω)) ∈ A1(M g,n),

λd := cd(π∗ω) ∈ Ad(M g,n).

1. This is needed because of the stacky structure of Mg,n. We will suppress the Q-
coefficients in the notation.
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The definition of κd that we use has first appeared in [1]. Closely related
classes can be defined by replacing ωlog by ω in the definition. Also notice
that κ0 = 2g − 2 + n because that is the degree of ωlog. The rank g bundle
E := cd(π∗ω) in the definition of the λ-classes is known as the Hodge bundle.

Mumford already realized that these tautological classes are not indepen-
dent. As an application of the Grothendieck-Riemann-Roch formula applied
to the morphism π he computed the total Chern character of the Hodge
bundle:

ch(E) = 1 +
∞∑

d=0

(−1)dBd+1

(d+ 1)!

(
−κd +

n∑

i=1

ψdi −
∑

∆

1

|Aut(∆)|i∆∗
ψda + ψdb
ψa + ψb

)

Here the last sum is over isomorphism classes of dual graphs ∆ of boundary
divisors, i∆ is the corresponding gluing map and ψa and ψb stand for the ψ-
classes at the two markings which are glued together. The Bd are Bernoulli
numbers, which are defined by the generating series

∞∑

d=0

Bd

d!
xd =

x

ex − 1
.

Because the Chern characters and the total Chern class are in general
related via

∞∑

d=0

cd(E) = exp

( ∞∑

d=1

(−1)d−1(d− 1)! · chd(E)

)
,

Mumford’s formula implies that the λ-classes can be expressed in terms of
κ-, ψ- and boundary classes.

Boundary classes as in Mumford’s formula which are obtained from tau-
tological classes via push-forward along the gluing maps are also considered
as tautological.

2.2 The tautological ring

A natural question to ask is whether as for the Grassmannian all the Chow
and cohomology classes of M g,n can be expressed in terms of tautological
classes. Unfortunately this is not true, there exist non-tautological classes
[20, 15].
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Still we can define a subring of the Chow ring ofM g,n as the ring generated
by all κ-, ψ-, λ-classes and classes obtained from them by push-forward along
the gluing maps. This subring

R∗(M g,n) ⊆ A∗(M g,n)

is called the tautological ring. A very compact definition is given in [14]:

The system of tautological rings of the moduli space of curves is the
smallest system of subrings R∗(M g,n) ⊆ A∗(M g,n) closed under push-forward
by the tautological gluing and forgetful maps.

Since rings and subrings include an identity element, this definition at
least does not produce the empty set. Furthermore, by using the self-
intersection formula and the deformation theory of stable curves, the class
ψi can be written as

π∗(−j∗(1)2),

where here π : M g,n+1 →M g,n is the forgetful map, j : M g,n×M0,3 →M g,n+1

is a gluing map and 1 is the identity. We still need to say that for j we put
the markings i and n+1 on the rational component and all other markings at
the genus g component. From the ψ-classes we can also construct κ-classes
via

π∗(ψ
d+1
n+1) = κd, (1)

and λ-classes can then be obtained via Mumford’s formula.

In fact, there is a (finite) generating set for R∗(M g,n) as first explicitly
written down in [20]. The generators correspond to dual graphs together
with for each vertex v the decoration of a monomial Mv in formal ψ- and
κ-classes of M g(v),n(v). If j is the gluing map corresponding to the dual graph,
the corresponding element of the generating set is given by

j∗

(∏

v

Mv

)
,

where here the formal monomials are evaluated at the usual ψ- and κ-classes.

By restriction we can also define tautological rings R∗(Mg,n), R∗(M rt
g,n)

and R∗(M ct
g,n). From the above set of generators we see that the tautological

ring of R∗(Mg) is generated by κ-classes. Also we can define the tautological
ring RH∗ in cohomology analogously as in Chow.
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2.3 Why?

It is very natural to ask why it is useful to study the tautological ring
instead of the whole Chow or cohomology ring.

First, in low genus all classes turn out to be tautological: By results of
Keel [29], in genus zero there are isomorphisms

R∗(M0,n) ∼= A∗(M0,n) ∼= H∗(M0,n) ∼= RH∗(M0,n).

In genus one by results first announced by Getzler [16] and finally worked
out by Petersen [42], the tautological ring in cohomology is still isomorphic
to the even cohomology of M1,n. However already in this case for large
enough n there exist odd cohomology classes which cannot be tautological
by definition, and also the Chow ring will not be finitely generated.

The main reason for considering the tautological ring is that in most
applications we use M g,n because of its universal property and not just as
an arbitrary space. Therefore when in an application a Chow or cohomol-
ogy class is produced in M g,n it is very likely to lie in the tautological ring.
Knowledge about the tautological ring might help us with obtaining an ex-
plicit formula for this class or with comparing it to similar classes. In turn,
as we will see in the next section, writing a class in terms of tautological
generators is useful for intersection number computations.

Another reason why it is natural to study the tautological ring is Mum-
ford’s conjecture, which is now proven by Madsen-Weiss [33]. The statement
of the conjecture is that the stable rational cohomology of Mg as g → ∞ is
isomorphic to

Q[κ1, κ2, . . . ]. (2)

We do not want to make this precise here, but morally the conjecture implies
that non-tautological classes are an unstable phenomenon, i.e. they don’t
come in canonical families for g → ∞. Mumford’s conjecture also implies
that relations between tautological classes are unstable as g →∞.

3 Intersection numbers

Using intersection theory we can produce easier to understand objects
from tautological classes: rational numbers

A class α in A3g−3+n(M g,n) is just a finite collection of points with rational
coefficients. Adding up the coefficients we obtain a rational number denoted

15



by ∫

Mg,n

α ∈ Q

and called intersection number or integral. For this definition it was impor-
tant that M g,n is proper since we have actually taken the proper push-forward
along the map from M g,n to a point.

For the moduli spaces M ct
g,n and M rt

g,n (g > 0) we cannot directly integrate.

Still we can try to use the inclusions M ct
g,n,M

rt
g,n ⊂ M g,n and integration on

M g,n. Here the classes λg and λgλg−1 are useful. The class λg has the
property that it vanishes on the complement of M ct

g,n in M g,n, and λgλg−1

even vanishes on the complement of M rt
g,n. So given α ∈ R2g−3+n(M ct

g,n) or

α ∈ Rg−2+n(M rt
g,n) we can choose any extension ᾱ to R∗(M g,n) and still obtain

well-defined integrals

∫

Mg,n

ᾱλg ∈ Q,
∫

Mg,n

ᾱλgλg−1 ∈ Q,

respectively.
By the formula of Mumford λg and λg−1 can be expressed in terms of

other κ-, ψ- and boundary classes. In turn by using a generalization of (1)
the κ-classes can be expressed in terms of ψ-classes. This essentially implies
that all integrals of tautological classes can be expressed in terms of the basic
integrals ∫

Mg,n

ψk11 · · ·ψknn , (3)

where the ki add up to 3g − 3 + n.
Motivated from physics (2-dimensional quantum gravity) Witten pro-

posed a conjecture [51], which makes it possible to compute all the inter-
section numbers (3). They are put into a generating series

F =
∑

g,n≥0
2g−2+n>0

1

n!

∑

k1,...,kn∑n
i=1 ki=3g−3+n

∫

Mg,n

ψk11 · · ·ψknn tk1tk2 · · · tkn =
t30
6

+
t1
24

+ · · ·

in infinitely many variables t0, t1, . . . . Witten’s conjecture then says that
expF is a τ -function for the KdV hierarchy. This means that F satisfies
a system of infinitely many partial differential equations, which turn out to
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give enough information about F to recursively determine all coefficients of
F and therefore the intersection numbers.

A first proof of Witten’s conjecture has been given by Kontsevich [30]
using a cellular decomposition of the moduli space obtained using Jenkins-
Strebel differentials. From this he obtains a formula for certain specializa-
tions of expF as a sum over ribbon graphs, which he interprets as certain
N ×N -matrix integrals. He deduces that expF must be a τ -function for the
KdV hierarchy. The occurring matrix integral is an asymptotic expansion of
a matrix generalization of the Airy function

Ai(x) =

∫ ∞

0

cos

(
t3

3
+ xt

)
dt. (4)

By now there are many other proofs of Witten’s conjecture. See for
example [35, 28, 38].

4 Faber’s conjectures

4.1 The conjectures

In [9] Carel Faber has proposed a remarkable series of conjectures con-
cerning the structure of the tautological rings R∗(Mg). Shortly afterwards
similar conjectures about R∗(M rt

g,n), R∗(M ct
g,n) and R∗(M g,n) have been made

[13, 10]. We will review here these conjectures together.
The first part of the conjectures says that each tautological ring is a

Gorenstein Q-algebra with socle in codimension

1. N = g − 2 + n− δ0,g for M rt
g,n,

2. N = 2g − 3 + n for M ct
g,n and

3. N = 3g − 3 + n for M g,n.

Here a graded Q-algebra A∗ is Gorenstein with socle in degree N if

1. for all k > N the vector space Ak is trivial (vanishing),

2. there exists an isomorphism AN ∼= Q (socle) and

3. this isomorphism together with the intersection product defines a per-
fect pairing

Ak × AN−k → AN ∼= Q

for 0 ≤ k ≤ N (perfect pairing).
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So the conjecture says that each tautological ring behaves like the rational
cohomology ring of a compact manifold of dimension 2N , in that it satisfies
Poincaré duality.

The isomorphism between the socle and Q is given by the integrals on
M g,n discussed in the previous section.

The second conjecture of Faber says that R∗(Mg), which as we have
already seen is the ring generated by the κ-classes, is already generated by
κ1, . . . , κbg/3c and that there are no relations between these classes in degree
≤ bg

3
c.

The third conjecture of Faber gives an explicit formula for the integrals
of ψ-classes against λgλg−1:
∫

Mg,n

ψk11 · · · · ·ψknn λgλg−1 =
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

i=1(2ki − 1)!!

∫

Mg,1

ψg−1
1 λgλg−1, (5)

where
∑
ki = g − 2 + n. This conjecture is now known as the λgλg−1-

conjecture. Getzler-Pandharipande have found in [17] a similar λg-conjecture
using the degree zero Virasoro conjecture [8]:

∫

Mg,n

ψk11 · · · · · ψknn λg =

(
2g − 3 + n

k1, . . . , kn

)∫

Mg,1

ψ2g−2
1 λg,

for
∑
ki = 2g − 3 + n. The integrals remaining on the right hand side of

the λg- and λgλg−1-conjecture have been explicitly evaluated by Faber and
Pandharipande [9, 11].

The Faber conjectures give an explicit description of the tautological ring
as the Gorenstein quotient, i.e. the ring obtained from a formal polynomial
ring in the generators by quotienting out the ideal of all formal homogeneous
classes x which pair to zero with any class y of opposite degree. Since we
have an explicit description of the set of generators and we can compute any
integral of tautological classes, this gives a conjectural presentation of the
tautological ring in terms of generators and relations.

Faber found his conjectures by developing an algorithm which finds in-
finitely many relations in the tautological ring of Mg. If one assumes that
the relations obtained from the algorithm are random inside the space of
all relations, sufficiently many of these relations should span the space of
all relations with high probability. If the quotient of the polynomial ring of
formal κ-classes by these relations becomes Gorenstein, one can stop because
any relation pairs to zero with any class and therefore has to be zero in a
Gorenstein ring.
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4.2 Current status

By now most of Faber’s conjectures have been proven. Let us walk
through them in the opposite way that we have presented them.

In [17] it has already been shown that the λg- and λgλg−1-conjectures
follow from the Virasoro conjecture for P1 and P2 respectively. Later Givental
proved the Virasoro conjecture for projective spaces [18], thus completing the
proof of the integral conjectures. The λg-conjecture had already been proven
earlier in [12] via a localization computation for P1.

To prove the generation result it is necessary to find relations between
κ-classes which express κi for i > bg

3
c in terms of polynomials of lower degree

κ-classes. The first proof of the conjecture in cohomology is given by Morita
in [36] using representation theory of the symplectic group. In Chow, the
first proof of was found by Ionel in [26]. She obtains the necessary relations
by an geometric argument using the locus of d-gonal curves in Mg.

The result that there are no relations between κ-classes in degree ≤ bg
3
c

is known as Harer stability since already before Faber’s conjectures Harer
proved a weaker result [23] in this direction. The statement necessary for
Faber’s conjecture has been proven by Boldsen in [3].

The most interesting part about Faber’s conjecture is the Gorenstein
property. The vanishing and socle part of the conjecture are now known in
all cases. In [32] it is proven that R∗(Mg) vanishes above degree g − 2 and
is at most one-dimensional in degree g − 2. By showing that the integral of
(5) is not zero Faber completed in [9] proof of the socle part for Mg. The
work [22] shows the socle statement for M g,n and in [14] uniform proofs for
all vanishing and socle statements are given.

Given that the vanishing and socle part of the Gorenstein conjecture are
known, proving the perfect pairing conjecture amounts to showing that the
tautological ring is isomorphic to the Gorenstein quotient and not to a proper
quotient of it.

As we have already noted, in genus zero and genus one the tautological
ring of M g,n coincides with the even cohomology ring and therefore Poincaré
duality implies the Gorenstein conjecture. By results [48, 49] of Tavakol it is
also known that R∗(M ct

1,n) and R∗(M rt
2,n) are Gorenstein.

By Faber’s computations it is also known that R∗(Mg) is Gorenstein for
g ≤ 23. However in genus 24, unless the “random” hundreds of relations
computed by Faber span only a proper vector subspace of the space of rela-
tions, the ring R∗(M24) has to coincide with the Gorenstein quotient except
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in degree 12, where dimR12(M24) = 37 in contrast to dimR10(M24) = 36.
Other methods of producing relations as in [47] or [52] also did not find the
“missing relation” in degree 12. Yin also studies the rings R∗(Mg,1) and finds
that they are Gorenstein for g ≤ 19, but did not find enough relations for
g = 20.

With these results doubts about the validity of the Gorenstein conjecture
began to arise and the following conjectures contradicting the Gorenstein
conjecture were made: Pandharipande conjectured that in all relations for
Mg can be expressed in terms of Faber-Zagier relations (see the next sec-
tion). Furthermore, Yin conjectured that for Mg,1 all relations are of motivic
nature. The conjecture of Pixton we discuss below is also in contradiction
to the Gorenstein conjecture. For M g,n and M ct

g,n all hope for the Goren-
stein conjecture was completely lost with the genus 2 counterexamples of
Petersen-Tommasi [43, 44].

Faber’s conjectures do not make any statement about Mg,n for n ≥ 2.
Here in fact, by results [5] of Buryak-Shadrin-Zvonkine, the tautological ring
does not have a one-dimensional socle. Instead the classes ψg−1

1 , . . . , ψg−1
n gen-

erate the n-dimensional vector space Rg−1(Mg,n). The vanishing Ri(Mg,n) =
0 for i ≥ g had already been shown earlier by Ionel in [27].

5 Relations

5.1 of Faber-Zagier

Faber’s algorithm for relations in R∗(Mg) produced in all examples a
unique relation in degree d for g = 3d+1. In 2000, after many computer cal-
culations and with a lot of guesswork, he together with Zagier conjectured
a general formula for this relation as well as an explicit set of polynomi-
als in κ-classes that all other relations found in the calculations are linear
combinations of. The hypergeometric series

A(t) =
∞∑

i=0

(6i)!

(3i)!(2i)!
ti,

B(t) =
∞∑

i=0

(6i)!

(3i)!(2i)!

6i+ 1

6i− 1
ti

play an important role in their formulation. The conjectural relations are
parametrized by a non-negative integer r and a partition σ with no part
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equal to 2 modulo 3, such that g− 1 + |σ| < 3r and g ≡ r+ |σ|+ 1 (mod 2).
It takes some definitions to write down the relations:

Let
p = {p1, p3, p4, p6, p7, . . . }

be a collection of variables indexed by the positive integers not congruent to
2 modulo 3 and let Ψ(t,p) be the formal power series

A(t)
∞∑

i=0

tip3i +B(t)
∞∑

i=0

tip3i+1,

where p0 := 1. Define rational numbers Cd(σ), for σ any partition with parts
not congruent to 2 modulo 3, by the formula

log(Ψ(t,p)) =
∑

σ

∞∑

d=0

Cd(σ)tdpσ,

where pσ denotes pa11 p
a3
3 p

a4
4 · · · if σ is the partition [1a13a34a4 · · · ]. Set

γ =
∑

σ

∞∑

d=0

Cd(σ)κdt
dpσ.

Then the tdpσ-coefficient of exp(−γ) is the Faber-Zagier relation for (d, σ).
The unique degree d relation in R∗(M3d+1) can be obtained by taking σ to
be the empty partition.

Faber-Zagier had already proved in 2002 that their conjectural relations
are at least relations on the level of the Gorenstein quotient, i.e. they pair to
zero with all classes of complementary codimension. However to my knowl-
edge [46] is the only place where to find a written down proof of this fact.

In [39] the first proof of the fact that these polynomials in κ-classes are
actual tautological relations was presented. The proof uses the geometry
of the moduli space of stable quotients (see Section 6) and analysis of the
generating series

Φ(z, q) =
∞∑

d=0

d∏

i=1

1

1− iz
(−1)d

d!

qd

zd
, (6)

which continues the analysis of the same series in [26].
The series A and B are fundamental to the tautological ring of Mg. They

very directly give the coefficients of the unique lowest degree relations. After

21



first being found by experimentally by Faber-Zagier, the series were derived
in different ways in [36, 26, 40]. As I noticed from [40], the series actually
appear directly in the asymptotic expansion of the Airy function and its first
derivative:

Ai(x) �x→∞
√
π

2
x−

1
4 e−

2
3
x
3
2A

(
−x

− 3
2

576

)
,

Ai′(x) �x→∞
√
π

2
x

1
4 e−

2
3
x
3
2B

(
−x

− 3
2

576

)
.

It is interesting to see the Airy function appearing naturally in the context
of the intersection numbers and the relations. See [4] for a survey of these
and similar appearances.

5.2 of Pixton

In 2012 Pixton was able to find relations [45] in the Gorenstein quotient
of M g,n, which, in the case n = 0 and when restricted to the locus of smooth
curves, exactly recover the relations of Faber-Zagier. We do not write them
explicitly here, but just note that they have a contribution from each bound-
ary stratum which in turn is a product of component, marking and node
contributions. All the contributions are determined in terms of the series A
and B. Pixton’s relations behave well under push-forward and pull-back via
the tautological maps and all known explicit relations in the tautological ring
can be written in terms of his relations. He conjectured that his relations
are relations on the level of the tautological ring and that they are all of the
relations.

The first proof of the fact that they are relations in the tautological ring
in cohomology has been given by Pandharipande-Pixton-Zvonkine in [40].
We will give the idea of proof in Section 7. Paper A contains the first proof
in Chow.

See [46] for some computations showing the discrepancy between the tau-
tological ring according to Pixton’s conjecture and the Gorenstein quotient.
For example the first discrepancy for R∗(Mg,1) is for g = 20 — exactly the
same place as where Yin was missing a relation. It is still very unclear how
to approach Pixton’s conjecture that his relations are all the tautological
relations.
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6 Stable maps and quotients

Gromov-Witten theory tries to study a space X (say a symplectic man-
ifold or a smooth variety) by studying in some sense the number of iso-
morphism classes of maps from curves C to X satisfying some boundary
conditions. To X the deformation invariant Gromov-Witten invariants are
assigned. One of the first applications of Gromov-Witten theory was the
computation of the number of rational curves of degree d through 3d − 1
points of P2 in generic position.

The moduli space underlying Gromov-Witten theory is M g,n(X, β), the
moduli space of stable maps f : C → X from nodal curves C of genus g with n
markings to X such that f([C]) has class β ∈ H2(X;Z). So the moduli space
parametrizes marked curves together with a map. As for curves, “stable”
means that each object (C, f) should only have finitely many automorphisms.
One feature of stable maps is that there can be contracted components, i.e.
some of the components of C can be mapped to a point.

The moduli space M g,n(X, β) is still a Deligne-Mumford stack and there
is a proper forgetful map ν to M g,n. However M g,n(X, β) has components
of varying dimensions and is therefore far from being smooth. In particular
there are in general components of the moduli of higher dimension than the
“generic” component of stable maps contracting none of the components of
the domain curve. The dimension of the “generic” component

vdim = (dim(X)− 3)(1− g) +

∫

β

c1(TX).

is known as the expected or virtual dimension. In [31] a program was pro-
posed to give an algebraic definition of Gromov-Witten invariants by con-
structing a cycle

[M g,n(X, β)]vir ∈ Avdim(M g,n(X, β))

satisfying many axioms. Such a cycle is called a virtual fundamental class.
In [2] a suitable cycle was constructed.

Gromov-Witten invariants are defined via integration against the virtual
class. For the primary invariants, the only classes used in the integration are
cycle classes of X pulled-back via the evaluation maps evi (i ∈ {1, . . . , n}),
i.e. the map sending a stable map to the image of the ith marking to its image
in X. For descendent Gromov-Witten invariants, in addition cotangent line
classes at the markings of the source curve are allowed.
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In this thesis we will use Gromov-Witten theory to obtain information
about the moduli space of curves. Instead of directly computing intersection
numbers, which is equivalent to computing the push-forward with respect
to the forgetful map from M g,n(X, β) to a point, we can factor this process
into first performing the push-forward via ν and then computing intersection
numbers on M g,n. In this thesis a main interest will lie in computing the
classes in M g,n obtained from the push-forward via ν of classes of M g,n(X, β)
capped against the virtual fundamental class. Because of its simplicity, the
main target X we consider will be P1. As in general for toric targets, the
method of virtual localization [21] makes it possible to compute all these
push-forwards explicitly.

To add some more detail, we will consider a non-trivial C∗-action on P1,
which induces a C∗-action on M g,n(P1, d). Here, d is an abbreviation for
the dth multiple of the fundamental class. By [21] the virtual fundamental
class splits into a sum of contributions from each fixed locus of M g,n(P1, d).
Each fixed locus is essentially a product of moduli spaces of curves and the
contributions can be expressed in terms of tautological classes.

In [39] and Paper A, the closely related moduli space of stable quotients
to P1 is used. The idea is to replace maps f : C → P1 by the pull-back of
the universal sequence

0→ OP1(−1)→ O2
P1 → OP1(1)→ 0

via f . The moduli problem considers marked nodal curves C together with
a quotient sequence

0→ S → O2
C → Q→ 0

such that S is a locally free sheaf of rank one and Q is a coherent sheaf
locally free at the nodes and markings of C. In addition a stability condition
is imposed. So whereas for a stable map the pull-back of OP1(1) is a vector
bundle, Q is allowed to have torsion.

A suitable moduli space Qg,n(P1, d) is constructed in [34] using Grothen-
dieck’s Quot-scheme. Here d stands for the degree of the quotient Q. In
addition, in analogy with the moduli space of stable maps, a forgetful map
to the moduli space of curves, evaluation maps and a virtual fundamental
class are constructed. Furthermore, Qg,n(P1, d) is birational to M g,n(P1, d),
there is a comparison map

c : M g,n(P1, d)→ Qg,n(P1, d)
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and all analogously defined invariants or push-forwards to the moduli space of
curves coincide. The main reason why Qg,n(P1, d) is used in [39] is because in
a localization computation less fixed loci will need to be considered compared
to M g,n(P1, d)

7 Cohomological field theories

The classes one obtains from the moduli space of stable maps via push-
forward along the forgetful map to the moduli space of curves satisfy many
properties, which follow from the properties of the virtual fundamental class.
The notion of a cohomological field theory [31] captures most of these.

Given a finite dimensional vector space V , a non-singular bilinear form η
and a vector 1, a cohomological field theory (CohFT) consists of a symmetric
multilinear form

Ωg,n ∈ H∗(M g,n)⊗ (V ∗)⊗n

for every g and n, satisfying some axioms, which basically say that the mul-
tilinear forms behave nicely with respect to pull-back via the gluing and
forgetful maps.

In the example of the Gromov-Witten theory of a smooth variety X
(assuming for simplicity that X has no odd cohomology) the vector space V
is the cohomology ring of X, the bilinear form η is the Poincaré pairing, 1 is
the identity and for α1, . . . , αn ∈ V we have

Ωg,n(α1, . . . , αn) =
∑

β

ν∗

(
n∏

i=1

ev∗i (αi) ∩ [M g,n(X, β)]vir

)
,

where ν is the projection to the moduli space of curves. For this definition
we need to assume that the sum over β converges. In any case, generalizing
the definition of a CohFT slightly, we can also add some formal variables
qβ to record β into the sum, and view Ωg,n as a CohFT over the Novikov
ring, i.e. the formal power series ring generated by variables qβ satisfying
qβ1qβ2 = qβ1+β2 .

There are also CohFTs not coming from Gromov-Witten theory. For
example in [40] a beautiful two dimensional example, Witten’s 3-spin class
Wg,n is used. For the purposes of the relations a very important fact is that
it is of pure cohomological degree

deg(Wg,n(ea1 , . . . , ean)) =
g − 1 +

∑n
i=1 ai

3
, (7)
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where each of a1, . . . , an is 0 or 1 and {e0, e1} is a distinguished basis of
the underlying vector space. For r ≥ 4 there is also an (r − 1)-dimensional
CohFT defined using Witten’s r-spin class.

Integrating the classes of a CohFT can be used to give V , thought of as
a manifold, the structure of a Frobenius manifold as introduced in [7]. In
particular every tangent space has the structure of a commutative Frobenius
algebra. The points where this algebra structure does not have any non-zero
nilpotent elements are called semisimple.

In the case that the origin in V is semisimple a powerful conjectural
reconstruction result of Givental [18] applies. It gives a formula to compute
Ωg,n in terms of genus 0 data which is computable in most cases. Givental’s
conjecture is now proven in cohomology by Teleman in [50]. As the proof
uses Mumford’s conjecture, it cannot be directly generalized to Chow. Still
in some examples such as the Gromov-Witten theory of toric varieties it is
known to also hold in Chow [19].

The 3-spin CohFT used in [40] is not semisimple at the origin, but at
least semisimple at a generic point of the Frobenius manifold. By a shifting
procedure the CohFT can be moved to such a point and Teleman’s recon-
struction result can be applied there. Pixton’s relations are found by the
observation that while shifted Witten’s class is supported in cohomological
degree at most (7) the reconstruction gives terms of higher degree. These
terms of higher degree must cancel, but this cancellation is non-trivial and
very directly implies the relations of Pixton.

8 Summary of the papers

8.1 Paper A

Paper A gives a proof of the fact that Pixton’s relations are relations in
the tautological ring in Chow.

The proof takes the stable quotient relations of [39], which, as the authors
point out, are restrictions of relations of R∗(M g). For concreteness, on the
way of generalizing to M g,n first the case of Cn

g , the n-fold tensor power of
the universal curve over Mg, is considered. In this case the proof is, up to
minor simplifications, the same as in [39].

When trying to go to the compactification M g,n things get much more
complicated. Whereas in the stable quotient localization computation for Cn

g
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only two fixed loci play a role, for M g,n, as the degree of the stable quotient
grows, more and more fixed loci need to be considered.

The fixed loci can be sorted according to dual graphs but at each edge
and leg of the dual graph we still need to sum over localization contributions
of chains of rational components. As pointed out by my advisor these sums
should be computable by the methods of Givental [19]. Using the comparison
between stable quotient and stable map invariants the series can indeed be
computed. At the time it was astonishing that the series Φ(z, q) of (6)
reappears here.

To get enough relations, in all cases it is necessary to not only consider
the virtual fundamental class but also its intersection with some natural
Chow classes on the moduli space of stable quotients. In the cases of Cn

g and

M g,n different classes are considered. In the first case the first Chern class
of the universal sheaf and in the second case, like in Gromov-Witten theory,
pull-backs of classes of P1 via the evaluation maps are taken. In order to
understand why in the end the same relations are obtained, Hassett’s mod-
uli space [25] of curves with weighted markings is considered to interpolate
between these cases.

8.2 Paper B

The work on Paper B was prompted by discussions with Y.P. Lee at the
conference Cohomology of the moduli space of curves organized by the For-
schungsinstitut für Mathematik (FIM) at ETH Zürich. Via the comparison
between stable maps and stable quotients, the localization calculation of Pa-
per A is essentially equivalent to Givental’s proof [19] of the reconstruction
theorem for the Gromov-Witten theory of P1.

As remarked in [40], the way that the relations are found from the 3-spin
theory can also be interpreted in a different way: While the Givental-Teleman
reconstruction cannot be directly applied at the non-semisimple origin, we
can shift to a semisimple point and look at what happens when we try to
approach the non-semisimple point. On the one hand the individual terms
of the reconstruction diverge, but on the other hand we know that the result
has to be Witten’s class. It follows that there has to be cancellation between
the terms.

As suggested by D. Zvonkine, this method can be used for any CohFT
which is semisimple at a generic point of the Frobenius manifold. The terms
in the reconstruction have poles at the non-semisimple locus and the neces-
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sary cancellation in order for a non-semisimple limit to exist imply tautolog-
ical relations. This approach gives a rich procedure of finding tautological
relations and while the relations have similar origin, they are much harder to
make explicit in higher dimensions and it is not directly clear how they are
related to Pixton’s relations.

Paper B gives a first comparison between these relations from different
CohFTs. It is shown that the relations from Witten’s 3-spin class (i.e. Pix-
ton’s relations) are equivalent to the relations from the equivariant Gromov-
Witten theory of P1. Furthermore, in higher dimensions the relations from
Witten’s r-spin class are contained in the set of relations of the equivariant
Gromov-Witten theory of Pr.

In higher dimensions, it is not clear that relations from degree consider-
ations as described in Section 7 are the same as relations from pole cancel-
lation. In Paper B, it is at least shown that the relations from the degree
considerations are included in the set of relations from pole cancellation.

In [41] (in preparation) the relations from degree considerations for Wit-
ten’s r-spin class are explicitly computed for specific shifts on the Frobenius
manifold. The relations from Witten’s 4-spin class are especially interesting
since they are more tractable than Pixton’s relations and by [46] the fact
that dimRH2(g−2)(Mg) = 1 can already be derived only from these relations.
The results of Paper B show that these relations hold also in Chow.

8.3 Paper C

Paper C finally proves a strong comparison result for the relations from
pole cancellation: The relations from any generically semisimple but not
everywhere semisimple CohFT are equivalent to Pixton’s relations.

In particular, all higher r-spin relations can be expressed in terms of
Pixton’s relation, as well as many relations obtained from virtual localization.
For example in future work [6] connection to the relations of Randal-Williams
[47] will be made.
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TAUTOLOGICAL RELATIONS IN MODULI SPACES OF

WEIGHTED POINTED CURVES

FELIX JANDA

Abstract. Pandharipande-Pixton have used the geometry of the moduli space

of stable quotients to produce relations between tautological Chow classes on
the moduli space Mg of smooth genus g curves. We study a natural exten-

sion of their methods to the boundary and more generally to Hassett’s moduli

spaces Mg,w of stable nodal curves with weighted marked points.
Algebraic manipulation of these relations brings them into a Faber-Zagier

type form. We show that they give Pixton’s generalized FZ relations when all

weights are one. As a special case, we give a formulation of FZ relations for
the n-fold product of the universal curve over Mg .

1. Introduction

1.1. Moduli spaces of curves with weighted markings.

1.1.1. Definition. As a GIT variation of the Deligne-Mumford moduli space of sta-
ble marked curves, for any n-tuple w = (w1, · · · , wn) with wi ∈ Q∩]0, 1] Hassett
[10] has defined a moduli space Mg,w, parametrizing nodal semi-stable curves C
of arithmetic genus g with n numbered marked points (p1, . . . , pn) in the smooth
locus of C satisfying two stability conditions:

(1) The points in a subset S ⊆ {1, . . . , n} are allowed to come together if and
only if

∑
i∈S wi ≤ 1.

(2) ωC (
∑n
i=1 wipi) is ample.

The second condition implies that the total weight plus the number of nodes of
every genus 0 component of C must be strictly greater than 2.

The main cases we have in mind are the usual moduli space Mg,n of marked
curves, which occurs when all the weights are equal to 1, the case when

∑n
i=1 wi ≤ 1,

which is a desingularization of the n-fold product of the universal curve over Mg,
and the case when g = 0, w1 = 1, w2 = 1 and

∑n
i=3 wi ≤ 1, which gives the Losev-

Manin spaces [13]. Moduli spaces mixed pointed curves also naturally appear when
studying moduli spaces of stable quotients [14].

We will use various abbreviations for the weight data, like (w, 1m) for the data
with first entries given by w and further m entries of 1.

1.1.2. Tautological classes. Using the universal curve π : Cg,w → Mg,w, the n

sections si : Mg,w → Cg,w corresponding to the markings and the relative dualizing
sheaf ωπ we can define ψ- and κ-classes:

ψi = c1(s∗iωπ)

κi = π∗(c1(ωπ)i+1)

1
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Notice that in the case of Mg,n the definition of κ-classes is different from the usual
definition as in [2].1

Each subset S ⊆ {1, . . . , n} defines a diagonal class DS as the class of the locus
where all the points of S coincide. By Condition (1) the class DS is zero if and
only if

∑
i∈S wi > 1.

As Mg,n the moduli space Mg,w is stratified according to the topological type
of the curve and each stratum, indexed by a dual graph Γ (see [8, Appendix A] for
a description of dual graphs of strata of Mg,n), is the image of a clutching map

ξΓ :
∏

i

Mgi,wi →Mg,w.

Here points which are glued together have weight 1. The map ξΓ is finite of degree
|Aut(Γ)| 2.

1.2. Formulation of the relations. To state the Faber-Zagier-type relations on
Mg,w we need to introduce several formal power series.

The hypergeometric series A and B already appeared in the original FZ relations.
They are defined by

A(t) =

∞∑

i=0

(6i)!

(3i)!(2i)!

(
t

72

)i
= 1 +O(t1), B(t) =

∞∑

i=0

(6i)!

(3i)!(2i)!

6i+ 1

6i− 1

(
t

72

)i
.

We will actually not directly use B in the definition of the relations but A and a
family Ci of series strongly related to A and B which were already used in [19] for
the proof of the equivalence between stable quotient and FZ relations on Mg. They
are defined recursively by

C1 = C =
B

A
, Ci+1 =

(
12t2

d

dt
− 4it

)
Ci.

Notice that Ci is a multiple of ti−1.
As in [19] these series appear in the study of the two variable functions

Φ(t, x) =

∞∑

d=0

d∏

i=1

1

1− it
(−1)d

d!

xd

td

γ =
∑

i≥1

B2i

2i · (2i− 1)
t2i−1 + log(Φ),

where the Bernoulli numbers Bk are defined by

t

et − 1
=
∞∑

k=0

Bk
tk

k!
.

1The κ-classes we use here appear naturally when pushing forward powers of ψ-classes along
maps forgetting points of small weight whereas the usual κ-classes are convenient when studying

push-forwards of powers of ψ-classes along maps forgetting points of weight equal to 1. The fact

that we will mainly consider the first kind of push-forwards explains our choice of κ-classes.
2To determine the number |Aut(Γ)| of automorphisms of Γ the graph Γ should be regarded

as a collection of distinct half-edges of which some are glued together. For example when n = 0
and Γ consists of exactly one vertex and one edge, there is exactly one non-trivial automorphism,

which interchanges the two half-edges; accordingly the map ξΓ : Mg−1,2 →Mg is a double cover.
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These two-variable functions appear both in the localization formula for stable
quotients (see Section 3 and [19]) and the S-matrix in the equivariant genus 0
Gromov-Witten theory of P1 (see Section 5).

Various linear bracket operators are used to insert Chow classes into the power
series in t. We define {}κ, {}ψ and {}DS for S ⊆ {1, . . . , n} by

{tk}κ =κkt
k

{tk}ψ =ψktk

{tk}DS =

{
ψki t

k, if S = {i},
(−1)|S|−1DSψ

k−|S|+1
i tk, else, where i ∈ S,

and linearity. It will moreover be useful to define brackets modified by a sign

ζ ∈ {±1}, denoted by {}ζκ, {}ζψ and {}ζDS respectively, by composing the usual
bracket operator with the ring map induced by t 7→ ζt. For a power series F in t
we will use the notation [F ]ti for the ti coefficient of F .

Proposition 1. For any codimension r and the choice of a subset S ⊆ {1, . . . , n}
such that 3r ≥ g + 1 + |S| the class
[ ∑

Γ
ζ:Γ→{±1}

1

|Aut(Γ)|ξΓ∗
( ∏

v vertex

exp(−{log(A)}ζ(v)

κ(v) )
∑

P`Sv

∏

i∈P
{C|i|}ζ(v)

Di

∏

e edge

∆e

)]

tr−|E|

in Ar(Mg,w) is zero, where the sum is taken over all dual graphs Γ of Mg,w with

vertices colored by ζ with +1 or −1, the class κ
(v)
i is the i-th κ-class in the factor

corresponding to v and Sv is S restricted to the markings at v. The edge term ∆e

depends only on the ψ-classes ψ1, ψ2 and colors ζi = ζ(vi) ∈ {±1} at the vertices
v1, v2 joined by e and is defined by

2t(ψ1 + ψ2)∆e = (ζ1 + ζ2){A−1}ζ1ψ1
{A−1}ζ2ψ2

+ ζ1{C}ζ1ψ1
+ ζ2{C}ζ2ψ2

.

To see that the series ∆e is well-defined one can use the identity A(t)B(−t) +
A(−t)B(t) + 2 = 0 [21]. The proof of Proposition 1 gives an alternative more
geometric proof.

In the case of Mg,n the relations of Proposition 1 are a reformulation of the part
of Pixton’s generalized FZ relations [21] with empty partition σ and coefficients ai
only valued in {0, 1}. The set S corresponds to the set of all i such that ai = 1.

To obtain a set of relations analogous to Pixton’s relations we need to take the
closure of the relations of Proposition 1 under multiplication with ψ- and κ-classes
and push-forward under maps forgetting marked points of weight 1. See for this
also the discussion in Section 6.4 and [20, Section 3.5].

In total this gives a proof of [21, Conjecture 1] in Chow. We therefore have ver-
ified Pixton’s remark [21] that it should be possible to adapt the stable quotients
method to prove that his generalized relations hold. In cohomology [21, Conjec-
ture 1] has already been established by a completely different method in [20].

1.3. Plan of Paper. Section 2 introduces stable quotient moduli spaces of P1

with weighted marked points, slightly generalizing the usual moduli spaces of stable
quotients. We define them, sketch their existence and review structures on them.
In Section 3 we review the virtual localization formulas both for stable quotients
and stable maps to P1. Section 4 contains a proof of Proposition 1 restricted to



4 FELIX JANDA

powers of the universal curve over Mg. The proof in this case is much simpler than
the general case but many parts of it can be referred to later on. Section 5 provides
calculations of localization sums using Givental’s method necessary in the proof of
the general relations. Finally Section 6 contains the proof of Proposition 1.

Acknowledgments. The author would like to thank Rahul Pandharipande for
the idea of considering the universal curve on the moduli space of stable quotient
and recognizing the edge sums appearing in the localization calculation and Aaron
Pixton for explaining many aspects of the preprint [18] and FZ relations in general.
The author is grateful for discussions with Alina Marian, Dragos Oprea and Dimitri
Zvonkine on the moduli of stable quotients.

The author was supported by the Swiss National Science Foundation grant SNF
200021 143274.

2. Moduli spaces of stable quotients

2.1. Introduction. The proof of Proposition 1 is based on the geometry of stable
quotients. These moduli spaces give an alternative compactification of the space
of maps from curves to Grassmannians and were first introduced in [14]. We will
need a combination of these spaces with Hassett’s spaces of weighted stable curves.
These spaces are different from the ε-stable quotient spaces introduced by Toda
[22], where the stability conditions on quotient sheaf instead of the points varies.
Similar spaces Mg,w(Pm, d) in Gromov-Witten theory have been studied in [1], [3]
and [16].

The moduli space Qg,w(P1, d) parametrises nodal curves C of arithmetic genus
g with n markings pi weighted by w together with a quotient sequence

0→ S → OC ⊗ C2 → Q→ 0

satisfying several conditions:

• The underlying curve with weighted marked points satisfies all the proper-
ties of being stable but possibly the ampleness condition (2).
• S is locally free of rank 1.
• Q has degree d.
• The torsion of Q is outside the nodes and the markings of weight 1.
• ωC (

∑n
i=1 wipi)⊗ S⊗(−ε) is ample for any 0 < ε ∈ Q.

Isomorphisms of stable quotients are defined by isomorphisms of weighted stable
curves such that the kernels of the quotient maps are related via pull-back by the
isomorphism. In Section 2.3 we give a precise definition for families and sketch a
proof that Qg,w(P1, d) is a proper Deligne-Mumford stack.

2.2. Structures. There is a universal curve Cg,w(P1, d) over Qg,w(P1, d) with a
universal quotient sequence

0→ S → OCg,w(P1,d) ⊗ C2 → Q→ 0.

Moreover as in Gromov-Witten theory for each marking i of weight 1 there is an
evaluation map evi : Qg,w(P1, d)→ P1, which is defined by noticing that

0→ S → OC ⊗ C2 → Q→ 0
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restricted to a marking p of weight 1 gives a point in P1 since tensoring the above
sequence with the residue field kp at p gives a kp valued point in the Grassmannian
G(1, 2) = P1.

There is also a forgetful map ν : Qg,w(P1, d)→Mg,w forgetting the data of the
quotient sequence and stabilizing unstable components.

Finally, there is a comparison map c : Mg,w(P1, d) → Qg,w(P1, d) from the

moduli space of stable maps of degree d to P1. It contracts all components that
would become unstable 3 and introduces torsion at the point the component is
contracted to according to the degree of the map restricted to that component.

The open substack Qg,w(P1, d) ⊂ Qg,w(P1, d) is defined to be the preimage of
the moduli space of smooth curves Mg,w under the forgetful map ν.

2.3. Construction. We want to reduce the existence of moduli spaces of stable
quotients with weighted marked points to that of the usual moduli spaces of stable
quotients. For this we use ideas from [1] and [3]. Because it is not the main topic
of this article we will try to be as brief as possible.

We will allow in this section the weight data also to include 0. So with w we
will denote an n-tuple (w1, . . . , wn) with 0 ≤ wi ≤ 1 for all i ∈ {1, . . . , n} here. We
also consider more generally stable quotients to Pm.

Definition. An object (C, s1, . . . , sn,Om+1
C → Q) in the stack Qg,w(Pm, d) over a

scheme S is a proper, flat morphism π : C → S together with n sections si and a
quotient sequence of quasi-coherent sheaves on C flat over S

0→ S → Om+1
C → Q→ 0

such that

(1) The fibers of π over geometric points are nodal connected curves of arith-
metic genus g.

(2) For any S ⊂ {1, . . . , n} such that the intersection of si for all i ∈ S is
nonempty we must have

∑
i∈S wi ≤ 1 and if in addition the intersection

touches the singular locus of π we must have
∑
i∈S wi = 0.

(3) S is locally free of rank 1.
(4) Q is locally free outside the singular locus of π and of degree d.
(5) ωπ(

∑n
i=1 wisi)⊗ S⊗(−ε) is π relatively ample for any ε > 0.

Two families (C, s1, . . . , sn,Om+1
C → Q), (C ′, s′1, . . . , s

′
n,Om+1

C′ → Q′) of stable
quotients over S are isomorphic if there exists an isomorphism φ : C → C ′ over S
mapping si to s′i for all i ∈ {1, . . . , n} and such that S and φ∗(S′) coincide when
viewed as subsheaves of Om+1

C′ .

Notice that there is no condition on the sections of weight 0. Therefore the
space Qg,(w,0f )(Pm, d) is isomorphic to the f -fold power of the universal curve of

Qg,w(Pm, d) over Qg,w(Pm, d).

In order to prove that Qg,w(Pm, d) is a Deligne-Mumford stack it is enough to

show that it is locally isomorphic to a product of universal curves over Qg,1f (Pm, d)
since this is a Deligne-Mumford stack as shown in [14] (by realizing it as a stack
quotient of a locally closed subscheme of a relative Quot scheme).

3The only components which are stable in the Gromov-Witten but not in the stable quotients

theory are non-contracted components of genus 0 with exactly one node and no marking.
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Lemma 1. For each point (C, s1, . . . , sn,Om+1
C → Q) in Qg,w(Pm, d) there exists

an open neighborhood which is isomorphic to an open substack of Qg,w′(Pm, d)
where w′ is {0, 1} valued.

Proof. The argument is the same as in [1, Corollary 1.18]. �

Separatedness follows from the following lemma, which is analogous to [3, Propo-
sition 1.3.4].

Lemma 2. The diagonal ∆ : Qg,w(Pm, d) → Qg,w(Pm, d) ×Qg,w(Pm, d) is repre-
sentable, finite and separated.

Proof. We proceed as in [3, Proposition 1.3.4].
Let (C, s1, . . . , sn,Om+1

C → Q) and (C ′, s′1, . . . , s
′
n,Om+1

C′ → Q′) be two stable
quotients over a base scheme S. We need to show that the category

Isom((C, s1, . . . , sn,Om+1
C → Q), (C ′, s′1, . . . , s

′
n,Om+1

C′ → Q′))
is represented by scheme finite and separated over S.

The images T and T ′ of the maps (Om+1
C )∗ → S∗ and (Om+1

C′ )∗ → (S′)∗ are
given by T = S∗(−D), T ′ = (S′)∗(−D′) for effective divisors D, D′ of some degree
d′ ≤ d on C respectively C ′. From this we can construct d′ additional sections
sn+1, . . . , sn+d′ for C and s′n+1, . . . , s

′
n+d′ for C ′. As in [4, Proposition 1.3.4] at

least étale locally d−d′ 4 further sections sn+d′ , . . . , sn+d for C and s′n+d′ , . . . , s
′
n+d

for C ′ can be constructed by choosing suitable hyperplanes Hi in Cm+1 and marking
sections at which the quotient is locally free and the quotient sequence coincides
with the sequence corresponding to the inclusion of Hi in Cm+1.

By the definition of stable quotients the resulting marked curves (C, s1, . . . , sn+d)
and (C ′, s′1, . . . , s

′
n+d) are (w, εd)-stable. This gives a closed embedding

Isom((C, s1, . . . , sn,Om+1
C → Q), (C ′, s′1, . . . , s

′
n,Om+1

C′ → Q′)) ↪→
⊔

σ∈Sd′
Isom((C, s1, . . . , sn+d), (C

′, s′1, . . . , s
′
n, s
′
n+σ(1), . . . , s

′
n+σ(d′), s

′
n+d′+1, . . . , s

′
n+d)).

Since by [10] the right hand side is a scheme finite and separated over S so is the
left hand side. �

Lemma 3. There is a surjective comparison map c : Mg,w(Pm, d)→ Qg,w(Pm, d).

Proof. This is similar to [22, Lemma 2.23]. �

Lemma 4. For w′ ≤ w there is a surjective reduction morphism

ρw′w : Qg,w(Pm, d)→ Qg,w′(Pm, d).

Proof. This follows from Lemma 3 and the corresponding result for stable maps
(see [3, Proposition 1.2.1]). �

Since Qg,w(Pm, d) is proper for w = 1n the preceding lemma implies that

Qg,w(Pm, d) is proper in general.

4Actually (m+ 1)(d− d′)
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3. Localization

The virtual localization formulas [9] for Qg,w(Pm, d) and Mg,w(Pm, d) are the
main tool we use to derive stable quotient relations. The existence of the necessary
virtual fundamental class [Mg,w(Pm, d)]vir for Mg,w(Pm, d) has been shown in [1]

and [3]. For the existence of a 2-term obstruction theory of Qg,w(Pm, d) the same
arguments as in [14, Section 3.2] can be used. They depend on existence of a ν-
relative 2-term obstruction theory of the Quot scheme and the non-singularity of
the Hassett moduli spaces of weighted curves. We will now follow Section 7 of [14].

In this paper we will only look at torus actions on moduli spaces of stable quo-
tients or stable maps of P1 which are induced from the diagonal action of C∗ on
C2 given by ([x0 : x1], λ) 7→ [x0 : λx1]. By s we will denote the pull-back of the
equivariant class s ∈ A1

C∗(pt) defined as the first equivariant Chern class of the
trivial rank 1 bundle on a point space with weight one action of C∗ on it.

The equivariant cohomology of P1 is generated as an algebra over Q[s] by the
equivariant classes [0], [∞] of the two fixed points 0 and ∞. These classes satisfy
(among others) the relation [0]− [∞] = s. Localizing by s, the classes [0] and [∞]
give a basis of A∗C∗(P1) as a free Q[s, s−1]-module.

3.1. Fixed loci. The fixed loci for the action of C∗ on Mg,w(P1, d) and Qg,w(P1, d)
are very similar. They are both parametrized by the data of

(1) a graph Γ = (V,E),
(2) a coloring ζ : V → {±1},
(3) a genus assignment g : V → Z≥0,
(4) a map d : V t E → Z≥0,
(5) a point assignment p : {1, . . . , n} → V ,

such that Γ is connected and contains no self-edges, two vertices directly connected
by an edge do not have the same color ζ,

g =h1(Γ) +
∑

v∈V
g(v),

d =
∑

i∈V tE
d(i), d|E ≥ 1,

and one further condition which depends on whether we look at Mg,w(P1, d) or

Qg,w(P1, d).
To state the stable quotient condition we need the following definition: A vertex

v ∈ V is called non-degenerate if the inequality

2g(v)− 2 + n(v) + εd(v) > 0

holds for any ε > 0. Here n(v) is the number of edges at v plus the number of
preimages under p weighted by the corresponding weight.

Then for the combinatorial data on the stable quotients side we demand each ver-
tex to be non-degenerate, whereas for the stable maps data the additional condition
is d|V = 0.

In the combinatorial data for Mg,w(P1, d) the vertices v of Γ correspond to curve
components contracted to the fixed point of P1 specified by ζ, that is 0 for ζ(v) = 1
and ∞ for ζ(v) = −1. The edges correspond to multiple covers of P1 ramified only
at 0 and ∞ with degree determined by the map d. For Qg,w(P1, d) the vertices of
Γ correspond to components C of the curve over which the subsheaf S is an ideal
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sheaf of the trivial subsheaf given by one of the two5 1-dimensional fixed subspaces
of C2, ζ specifies which subspace of C2 was chosen and −d the degree of S. Edges
correspond to multiple covers of P1 ramified in the two torus-fixed points.

The fixed locus corresponding to the combinatorial data is, up to a finite map,
isomorphic to the product

∏

v∈V
Mg(v),(w(v),εd(v))/Sd(v),

where w(v) is a (|p−1(v)| + |{e adjacent to v}|)-tuple, which we will index by
p−1(v) t {e adjacent to v}, such that w(v)i = wi if i ∈ p−1(v) and w(v)e = 1
for adjacent edges e. The symmetric group Sd(v) permutes the ε-stable points. The
product should be taken only over all non-degenerate vertices.

3.2. The formula. The virtual localization formula expresses the virtual funda-
mental class as a sum of the (virtual) fundamental classes of the fixed loci X
weighted by the inverse of the equivariant Euler class of the corresponding virtual
normal bundle NX . In order to make sense of this inverse it is necessary to localize
the equivariant cohomology ring by s.

The inverse of the Euler class of NX is in both cases a product
∏

v

Cont(v)
∏

e edge

Cont(e),

for certain vertex and edge contributions depending only on the data of the graph
corresponding to the vertex or edge. The contributions Cont(e) and Cont(v) for v
degenerate are pulled back from the equivariant cohomology of a point. We will
not need to know the exact form of the edge and unstable vertex contributions here
apart from the fact that the contribution of a vertex v with d(v) = g(v) = 0 and
|w(v)| = 1 is equal to 1.

The non-degenerate vertex contribution is pulled back from

A∗C∗(Mg(v),(w(v),εd(v))/Sd(v))⊗Q[s, s−1].

It is given by

(1) Cont(v) = (ζ(v)s)g(v)−d(v)−1
∞∑

j=0

ci(Fd(v))

(ζ(v)s)i

∏

e

ζ(v)s

ωve − ψe
,

where Fd is the K-theory class Fd = E∗ − Bd − C, the product is over edges e
adjacent to v and

ωve =
ζ(v)s

d(e)
.

The dual E∗ of the Hodge bundle E has fiber

(H0(C,ωC))∗

over a marked curve (C, pi), the rank d bundle Bd on Mg,(w,εd)/Sd has the fiber

H0(C,OC(pn+1 + · · ·+ pn+d)|pn+1+···+pn+d
)

5These correspond to the two fixed points in P1.



TAUTOLOGICAL RELATIONS IN MODULI SPACES OF WEIGHTED POINTED CURVES 9

over a marked curve (C, pi). The bundle Bd can also be thought as an Sd invariant
bundle living on Mg,(w,εd). In [14] the Chern classes of this lifted bundle have been
computed:

c(−Bd) =
n+d∏

i=n+1

1

1− ψn+i −
∑n+i
j=n+1Dij

.

Notice the similarity to the Φ function. The Chern classes for Bd on Mg,(w,εd)/Sd
can be calculated by push-forward along the finite projection map and dividing by
the degree d!.

3.3. Comparison. The C∗ actions on Mg,w(P1, d) and Qg,w(P1, d) are compatible

with the comparison map c : Mg,w(P1, d) → Qg,w(P1, d) and c hence maps fixed
loci to fixed loci. The image of a locus corresponding to some combinatorial data is
given by contracting all degenerate vertices, adding the values of d of the contracted
vertices and edges to the degree of the image vertex of the contraction, and replacing
the point assignment p by its composition with the contraction.

The Gromov-Witten stable quotient comparison says that the contribution of a
stable quotient fixed locus to the virtual fundamental class of Qg,w(P1, d) is the
sum of push-forwards of the contributions of all stable maps loci in the preimage of
c to the virtual fundamental class of Mg,w(P1, d). This in particular implies that

c∗([Qg,w(P1, d)]vir) = [Mg,w(P1, d)]vir.

4. The open locus

We will first restrict ourselves to the special case of n-fold tensor powers Mg|n of
the universal curve Cg over Mg. This case occurs when the weights are sufficiently
small (i.e.

∑n
i=1 wi < 1) and we restrict ourselves to the locus corresponding to

smooth curves.

4.1. Statement of the stable quotient relations. Let us define the bracket
operator {}∆ on Q[[t, p1, . . . , pn]] in terms of the operators from the introduction by

{f(t)}∆ =− {f(t)}κ{
f(t)

∏

i∈S
pi

}

∆

={f(t)}DS

{peif(t, p1, . . . , pn)}∆ ={pif(t, p1, . . . , pn)}∆,

if e > 0. For example {t2p3
1}∆ = t2ψ2

1 and {t2p1p2}∆ = −D12ψ1 = −D12ψ2.

Proposition 2. The relations given by

∑

ζ∈{±1}
ζg−1

[
exp

(
−1

2
ζp+ {exp(−pD)γ(ζt, x)}∆

)]

trxdpa

= 0,

with the differential operator D = tx d
dx and p = p1 + · · · + pn hold in Mg|n under

the condition g − 2d− 1 + |a| < r.
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4.2. Proof of the stable quotient relations. We generalize here the localization
method of [19].

For each i ∈ {1, . . . , n} we can define a class si ∈ A1(Mg|n(P1, d)) as the pull-back

of c1(S) from the universal curve Cg|n(P1, d) via the i-th section.
For given nonnegative integers ai let us look at the class

sa =
n∏

i=1

(−si)ai ∈ A|a|(Mg|n(P1, d)).

The strategy is to study the C∗ action from Section 3, to lift sa to equivariant
cohomology and to write down the localization formula calculating the push-forward
of this class to the equivariant cohomology of Mg|n. As we have seen the general
form of the localization formula is a sum of contributions from the fixed loci. For
each fixed locus a class from its equivariant Chow ring localized by the localization
variable s pushed forward via the inclusion of the fixed locus. We get the relations
from the fact that the rational functions in the localization variable we obtain must
actually be polynomials in s after summing over all fixed loci.

Remark 1. In [14] and [19] the same strategy was pursued but other related classes
were chosen to be pushed forward. In similar spirit we could add factors of the
form π∗(sn+1c1(ωπ)b), where π : Qg|n+1(P1, d) → Qg|n(P1, d) is the forgetful map
and ωπ is the relative dualising sheaf, to the class we are pushing forward. However
because of the commutative diagram

Qg|n+1(P1, d)

Mg|n+1

Qg|n(P1, d)

Mg|n

ν

π

ν

π

and the fact that c1(ωπ) = ν∗(ψn+1) these will be contained in the completed set
of stable quotient relations.6

In [19] only factors with a = 1 were used to derive the FZ relations on Mg. The
results from Section 4.3.2 imply that allowing higher values for a would not have
led to more stable quotient relations.

The action of C∗ on P1 is induced by the action of C∗ on C2 given by ([z0, z1], λ) 7→
[z0, λz1]. This naturally induces C∗ actions not only on Qg|n(P1, d) but also on the

universal curve Cg|n(P1, d) and the universal sheaf S. This gives a natural lift of
the si to equivariant cohomology and therefore also a natural lift of sa. We will
not choose this lift but instead

s̃a =

n∏

i=1

(
−si −

1

2
s

)ai
∈ A|a|C∗(Mg|n(P1, d)),

where the si are the natural lifts.
Let us consider the localization formula for this equivariant lift applied to the

push-forward

ν∗(s
a ∩ [Mg|n(P1, d)]vir) ∈ A2g+2d−2+n−|a|(Mg|n).

6To see this for more than one factor (say m factors) one needs to first interpret the product

as a class on the m-fold tensor power X of Qg|n+1(P1, d) over Qg|n(P1, d) and use the birational

map from Qg|n+m(P1, d) to X.
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Let us shorten this by writing νvir∗ (sa) for this push-forward after capping with the
virtual fundamental class.

Because we assume the strict inequality
∑n
i=1 wi < 1 there are only two fixed

loci with respect to the torus actions in the description of Section 3.1. Concretely in
this special case they correspond to elements (C, p1, . . . , pn) of Mg|n with quotient
sequence

0→ OC(−pn+1 − · · · − pn+d)→ O2
C → Q→ 0

where the first map factors through OC and the map OC → O2
C is induced from

one of the two torus invariant inclusions of C as a coordinate axis in C2. Here
OC(−pn+1 − · · · − pn+d) is an ideal sheaf of OC of degree d. Both fixed point loci
can be identified with Mg|n+d/Sd where the symmetric group Sd permutes the last
d markings.

Since the graphs corresponding to the fixed point loci have each only one vertex
and no edge we can calculate the inverse of the equivariant Euler class of the normal
bundle to each fixed locus using (1). It is given by

(ζs)g−d−1
∞∑

j=0

ci(Fd)
(ζs)i

,

where ζ is +1 and −1 for 0 and ∞ respectively.
Applying the fixed point formula we obtain for the sc part of the push-forward

(2)

[νvir∗ (s̃a)]sc =
1

d!

∑

ζ

ε∗




n∏

i=1

(
−sit−

1

2
ζ

)ai ∞∑

j=0

tjζg−d−1−jcj(Fd)



tg−1−d−c+|a|

,

where ε : Mg|n+d → Mg|n forgets the last d markings. We have here by abuse of
notation denoted similarly defined classes on Mg|n+d with the same name as on

Mg|n(P1, d). The expression (−sit − 1
2ζ) comes from the fact that the torus acts

trivially on the subspace of C2 given by 0 and with weight 1 on the subspace given
by ∞. The equivariant lift of the si was chosen in order to have this symmetric
expression.

Since the push-forward must be an honest equivariant class, the classes (2) must
be zero if c < 0.

Let us package these relations into a power series. We have

(3)

n∏

i=1

1

ai!
[νvir∗ (s̃a)]sc =

∑

ζ

ζg−d−1ε∗[exp(−T1)T2]trxdpa ,

with

T1 =
n∑

i=1

(
sit+

1

2
ζ

)
pi,

T2 =
∞∑

j=0

∞∑

d=0

(ζt)jcj(Fd)
xd

d!
.

Since

si =
n+d∑

j=n+1

Dij
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we can rewrite T1 as

T1 =
n∑

i=1

n+d∑

j=n+1

Dijpi +
1

2
ζ

n∑

i=1

pi.

4.2.1. Relations between diagonal classes. In order to better understand c(Fd) let
us here collect the universal relations between classes in A∗(Mg|n).

The basic relations are

Dijψi = Dijψj = −D2
ij

DijDik = Dijk

for pairwise different i, j, k (compare to [5]). Let DS,a ∈ Aa(Mg|n) by defined for
any S ⊂ {1, . . . , n} and a ≥ |S| − 1 by

DS,a =

{
ψai , if S = {i},
(−1)|S|−1DSψ

a−|S|+1
i , else, where i ∈ {1, . . . , d}.

Then DS,aDT,b = DS∪T,a+b if S ∩ T 6= ∅.
Lemma 5. Each monomial M in diagonal and cotangent line classes in A∗(Mg|n)
can be written as a product

M = ±
∏

S∈P
DS,a(S)+|S|−1

for some partition P of {1, . . . , d}, function a : P → Z≥0 and a suitable choice
of sign. This product decomposition is unique if we only use the above relations
between diagonal and cotangent line classes.

Remark 2. If the partition P is the one element set partition, we say that M is
connected. We call the factors of the decomposition (or just the elements of P ) the
connected components of M .

The push-forward under the forgetful map π : Mg|n →Mg|n−1 is given by

π∗DS,a =





0, if n /∈ S,
κa−1, if |S ∩ {n}| = 1,

−DS\{n},a−1, else.

Here and in the rest of this article κ−1 is defined to be zero.

4.2.2. Simplest relations. Let us first consider the stable quotient relations in the
case of a = 0. Then they are simply

0 =
∑

ζ

ζg−d−1ε∗



∞∑

d=0

∞∑

j=0

(ζt)jcj(Fd)
xd

d!



trxd

for

(4) r > g − 1− 2d.

By the definition of Fd as a K-theoretic difference of E∗, a trivial rank 1 bundle
and Bd the inner sum breaks into two factors. The part corresponding to E∗ is
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pulled back from Mg|n and does not depend on d. Using Mumford’s formula [15]
we can therefore rewrite the relations as: The class

∑

ζ

ζg−d−1


exp

(
−
∑

i≥1

B2i

2i(2i− 1)
κ2i−1(tζ)2i−1

)
ε∗

∞∑

d=0

∞∑

j=0

(ζt)jcj(−Bd)
xd

d!



trxd

is zero if (4) holds.
To deal with the second factor we formally expand it as a power series in x, t and

the classes DS,a for various S ⊂ {n+1, . . . , n+d} and a ∈ Z≥0. By the exponential
formula and the facts from Section 4.2.1 we have that

ε∗

∞∑

d=0

∞∑

j=0

(ζt)jcj(−Bd)
xd

d!
= exp

(
ε∗

∞∑

d=1

∞∑

r=0

SrdD{n+1,...,n+d},r(ζt)
r x

d

d!

)

where

log

( ∞∑

d=0

d∏

i=1

1

1− it
xd

d!

)
=
∞∑

d=1

∞∑

r=0

Srdt
r x

d

d!
.

With ε∗D{n+1,...,n+d},r = (−1)d−1κr−d and noticing the similarities between the
series defining Srd and log(Φ) we obtain

ε∗

∞∑

d=0

ζd
∞∑

j=0

(ζt)j

td
cj(−Bd)

xd

d!
= exp (−{log(Φ(ζt))}κ)

and so the stable quotient relations in the case a = 0 are

∑

ζ

ζg−1 exp (−{γ(ζt)}κ)



trxd

= 0

under Condition (4).

4.2.3. General relations. We will investigate how monomials in the si affect the
push-forward under ε of monomials supported only on the last d points.

Notice that for each partition P of {n+ 1, . . . , n+ d} we have

(5) exp

(
−

n∑

i=1

si

)
=
∏

S∈P
exp


−

n∑

i=1

∑

j∈S
Dij


 ,

and each factor is pulled back via the map forgetting all points in {n+1, . . . , n+d}
not in S.

Moreover notice that if M is a connected monomial supported in the last d
marked points with ε∗M = [−{f(t)}κ]tr = [{f(t)}∆]tr , we have
(6)

[ε∗((−sipi)exdM)]xd = [ε∗((−dDi,n+1pi)
exdM)]xd = [{(piD)e(xdf(t))}∆]trxd .

From (5), (6) and the identity

exp(pD) exp(f(t, x)) = exp(exp(pD)f(t, x))

we obtain the general stable quotient relations

∑

ζ

ζg−1

[
exp

(
−1

2
ζp+ {exp(pD)γ(ζt, x)}∆

)]

trxdpa

= 0,
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if

(7) r > g − 1− 2d+ |a|.

4.3. Evaluation of the relations.

4.3.1. Minor simplification. Notice that in the relations of Proposition 2 the sum-
mands in the ζ sum are equal up to a sign

(−1)g−1+r+|a|.

Therefore the relations are in fact zero if g + r + |a| ≡ 0 (mod 2), and in the case

(8) g − 1 + r + |a| ≡ 0 (mod 2)

we can reformulate them to
[
exp

(
−1

2
p+ {exp(pD)γ(t, x)}∆

)]

trxdpa

= 0.

4.3.2. Differential algebra. In this section we will establish that it is enough to
consider the stable quotient relations in the case that ai < 2 for all i ∈ {1, . . . ,m}.

The series δ = Dγ − 1
2 satisfies the differential equation

Dδ = −δ2 + x+
1

4
,

as can be derived from the differential equation

D(Φ−DΦ) = −xΦ,

which is satisfied by Φ as seen by looking at its series definition.
Reformulating the relations with δ gives

[
exp

(
−{γ}κ +

∞∑

i=1

1

i!
{piDi−1δ}∆

)]

trxdpa

= 0

if (7) and (8) hold.
Let us consider

G =

∂2

∂p2
j
F

F
,

with

F = exp

(
−{γ}κ +

∞∑

i=1

1

i!
{piDi−1δ}∆

)
.

We have that

G =
∂2

∂p2
j

∞∑

i=1

1

i!
{piDi−1δ}∆ +

(
∂

∂pj

∞∑

i=1

1

i!
{piDi−1δ}∆

)2

= {exp(pD)Dδ}∆j + {exp(pD)δ}2∆j
,

where the operator {}∆j is defined by {f}∆j = p−1
j {pjf}∆. The bracket {}∆j and

squaring commute because, informally said, {}∆j
connects any term to j. So we
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obtain

G ={exp(pD)Dδ + (exp(pD)δ)
2}∆j

= {exp(pD)(Dδ + δ2)}∆j

=

{
exp(pD)

(
x+

1

4

)}

∆j

=
1

4
+ x{exp(pt)}∆j

,

Therefore we have that

∂2

∂p2
j

F =

(
1

4
+ x{exp(pt)}∆j

)
F.

and can express the relations for aj ≥ 2 in terms of lower relations multiplied by
monomials in cotangent line and diagonal classes.

4.3.3. Substitution. The differential equation satisfied by −tγ has been studied by
Ionel in [11]. In [19] her results were extended to give formulas for Diγ. We will
collect some of their results on γ and its derivatives here.

With the new variables

u =
t√

1 + 4x
, y =

−x
1 + 4x

one can write

γ =
1

t
(tγ)(0, x) +

1

4
log(1 + 4y) +

∞∑

k=1

k∑

j=0

ck,ju
kyj ,

for some coefficients ck,j , which are defined to vanish outside the summation region
used above. Furthermore, we have for the derivatives of δ

Di−1δ = (1 + 4y)−
i
2



i−1∑

j=0

biju
i−1yj −

∞∑

k=0

k+i∑

j=0

cik,ju
k+iyj


 =: (1 + 4y)−

i
2 δi,

for some coefficients bij , c
i
k,j .

We will also need a result by Ionel relating coefficients of a power series F in x
and t before and after the variable substitution:

[F ]trxd = (−1)d[(1 + 4y)
r+2d−2

2 F ]uryd

Let us now apply these formulas to the relations. Using the fact that κ−1 = 0
we get


(1 + 4y)e exp


−




∞∑

k=1

k∑

j=0

ck,ju
kyj




κ

+

∞∑

i=1

1

i!
{piδi}∆





urydpa

= 0,

under conditions (7) and (8), where the exponent e is

e =
r + 2d− 2

2
− κ0

4
− |a|

2
=
r + 2d− 1− g − |a|

2
.
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4.3.4. Extremal coefficients. It is noticeable that in the series

∞∑

k=1

k∑

j=0

ck,ju
kyj ,

i−1∑

j=0

biju
i−1yj −

∞∑

k=0

k+i∑

j=0

cik,ju
k+iyj

appearing in the formulas for γ and Di−1δ the y-degree is bounded from above by
the u-degree. We will only be interested in the extremal coefficients. Here the A
and Ci come into the picture.

In [11] it has been proven that

log(A(t)) =
∞∑

k=1

ck,kt
k

and in [19] it is shown that

2−iCi(t) = bii−1t
i−1 −

∞∑

k=0

cik,k+it
k+i.

We see that in the exponential factor of the relations for each summand the
y-degree is bounded from above by the u-degree. Furthermore the exponent e of
the (1 + 4y)-factor is integral and positive by (8) and (7). This implies that the
relation is zero unless

(9) 3r ≥ g + 1 + |a|
holds. With the following lemma we can extract the extremal part of the relations.

Lemma 6. Fix any Q algebra A, any F ∈ A[y] and any c ∈ Z≥0. The relations

[(1 + 4y)dF ]yd = 0

for all d > c imply F = 0.

Proof. The relations can be rewritten to
[(

1

y
+ 4

)d
F

]

y0

= 0.

The lemma follows by the fact that F is a polynomial in y, and linear algebra. �

Using the lemma and the formulas for the extremal coefficients we obtain that
the relations [

exp(−{log(A)}κ) exp

( ∞∑

i=1

1

i!
{piCi}∆

)]

zrpa

= 0

hold under the conditions (8) and (9).
Ignoring terms of higher order in the pi the second factor can be rewritten

exp

( ∞∑

i=1

1

i!
{piCi}∆

)
≡ exp


 ∑

∅6=S⊆{1,...,n}
{pSC|S|}∆




≡
∑

S⊆{1,...,n}
pS
∑

P`S

∏

i∈P
{C|i|}Di .
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Thus we finally obtain that the FZ-type relations
[

exp(−{log(A)}κ)
∑

P`S

∏

i∈P
{C|i|}Di

]

zr

= 0,

hold for any S ⊆ {1, . . . , n} if (8) and (9).

5. Localization sums

In the derivation of the more general stable quotient relations we will need to
deal with two types of localization sums related to the nodes and marked points,
respectively. To keep the length of the proof of the stable quotient relations more
reasonable we will deal with them here. The sums are genus independent and have
been studied more generally by Givental [6]. We apply here his method in a special
case. See also [7] and [12].

Let N∗C∗(P1) be the Novikov ring of P1 with values in C[s, s−1]. We define a
formal Frobenius manifold structure on X = A∗C∗(P1)⊗N∗C∗(P1) over N∗C∗(P1) using
equivariant Gromov-Witten theory. The N∗C∗(P1)-module X is free of dimension
two with basis {φ0, φ∞} for φi = [i]/ei, where ei is the equivariant Euler class of
the tangent space of P1 at i. We denote the corresponding coordinate functions
by y0, y∞. This gives a basis { ∂

∂y0
, ∂
∂y∞
} of the space of vector fields on X. The

metric is given in this basis by

g =

(
s−1 0
0 −s−1

)
=

(
e−1

0 0
0 e−1

∞

)
.

The primary equivariant Gromov-Witten potential is
∞∑

n=0

1

n!

∞∑

d=0

xd
∫

[M0,n(P1,d)]vir

n∏

i=1

ev∗i (y0φ0 + y∞φ∞) =
y3

0

6s
− y3

∞
6s

+ xew,

where we have set w = (y0 − y∞)/s (compare to [17]). Thus we have

α =

(
dy0 + x

e0
ewdw x

e∞
ewdw

x
e0
ewdw dy∞ + x

e∞
ewdw

)
,

for the matrix of one forms

α =
∑

i

Aidyi,

where the matrices Ai are defined by the quantum product

∂

∂yi
?

∂

∂ya
=
∑

b

[Ai]
b
a

∂

∂yb
.

Using α we can compactly write down the differential equation for the S-matrix

(td− α)S = 0,

with initial condition S(0, 0) = Id.
If we set

S =

(
S0

0 S0
∞

S∞0 S∞∞

)
,

this gives the system

tdSji = Sji dyj +
∑

k

Ski
x

ek
ewdw,



18 FELIX JANDA

with unique solution

Sji = e
yi
t

((
1 + ζiζj

2
− tx d

dx

)
Φ

)(
− t

ei
,
xew

e2
i

)

under the initial conditions. Here the signs ζi ∈ {±1} are defined by ζi = ei
s ∈ {±1}.

There is a set of canonical coordinates ui on X defined by the localization sums

ui =

∞∑

n=0

∞∑

d=0

xd
∑

Γ∈Gui0,n+2(P1,d)

ContΓ

(
ei
∂2F0

(∂yi)2

)
,

where Gu
i

0,n+2(P1, d) is the set of (n+2)-point (each of weight 1) degree d localization
graphs with the first two points on a single component contracted to i and ContΓ

stands for the contribution of a graph Γ in the localization formula. By the Gromov-
Witten stable quotient comparison and since there is only one fixed locus on the
stable quotient side we have

ui(0, 0) = eie
−d−1
i

∞∑

d=1

xd

d!

∫

M0,2|d

∞∑

j=0

cj(Fd)
eji

,

where M0,2|d = M0,(12,εd) is a Losev-Manin space. Since the Hodge bundle is trivial

on M0,2|d this simplifies to

ui(0, 0) = eie
−d−1
i

∞∑

d=1

xd

d!

∫

M0,2|d

∞∑

j=0

cj(−Bd)
eji

.

Recalling the definition of Bd we can write the integrand on the right hand side as
a sum of monomials in ψ- and diagonal classes. The integral of such a monomial
vanishes unless it is the diagonal where all d points come together. The constants
−C−1

d which are defined from log(Φ) by

log(Φ(t, x)) =
∞∑

d=1

∞∑

r=−1

Crdt
r x

d

d!

exactly count these contributions. So we get

(10) ui(0, 0) = −
∞∑

d=1

C−1
d

xd

d!
e−2d+1
i .

Using the S-matrix and the ui we can now calculate the series we are interested
in. We will not regard S and the ui outside (0, 0), so let us write from now on Sji
for Sji (0, 0) and ui for ui(0, 0).

The first series P ij will be needed to deal with stable quotient localization chains
containing one of the weight 1 marked points. We have

P ij(t, x) :=
1 + ζiζj

2
+
∞∑

d=1

xd
∑

Γ∈GPij0,2 (P1,d)

eie
ui/ωΓ

ωΓ − t
ContΓ

(
∂F0

∂yi∂yj

)
= eu

i/tζiζjS
j
i (−t),

where GP
ij

0,2 (P1, d) is the set of all localization graphs with the first marking on
a valence 2 vertex at i and the second marking at j and ωΓ is the ω as in (1)
corresponding to the flag at the first marking.
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The second series is needed to deal with chains at the nodes of the curve. We
have

Eij(t1, t2, x) :=
∞∑

d=1

xd
∑

Γ∈GEij0,2 (P1,d)

eie
ui/ωΓ,1

ωΓ,1 − t1
eje

uj/ωΓ,2

ωΓ,2 − t2
ContΓ

(
∂F0

∂yi∂yj

)

=
s

t1 + t2

(
ζi + ζj

2
− eui/t1+uj/t2ζiζj

∑

µ

Sµi (−t1)ζµS
µ
j (−t2)

)
,

where GE
ij

0,2 (P1, d) is the set of all localization graphs with both markings on valence
2 vertices, the first marking mapped to i, the second marking to j, and ωΓ,1, ωΓ,2

are ω as in Section 3.2 corresponding to the flag at the first and second marking
respectively.

Let us now simplify the expressions for P ij(t, x) and Eij(t1, t2, x) using the
explicit S-matrix and canonical coordinates at 0. For P ij(t, x) we obtain

P ij(t, x) = exp

(
−
∞∑

d=1

C−1
d t−1x

d

d!
e−2d
i

)((
1 + ζiζj

2
− tζiζjx

d

dx

)
Φ

)(
t

ei
,
x

e2
i

)

=

((
1

2
− ζiζjδ

)
Φ′
)(

t

ei
,
x

e2
i

)
,

where Φ′ is defined by

Φ′(t, x) = exp

(
−
∞∑

d=1

C−1
d t−1x

d

d!

)
Φ(t, x) = exp

( ∞∑

d=1

∞∑

r=0

Crdt
r x

d

d!

)
.

Similarly we obtain

t1 + t2
s

Eij(t1, t2, x) =
ζi + ζj

2
+

Φ′
(
t1
ei
,
x

e2
i

)
Φ′
(
t2
ej
,
x

e2
j

)(
ζiδ

(
t1
ei
,
x

e2
i

)
+ ζjδ

(
t2
ej
,
x

e2
j

))
.

6. The general case

We now extend the relations of Section 4 to the boundary and allow nearly
arbitrary weights. More precisely we will assume that:

(11) If for some S ⊂ {1, . . . , n} we have
∑

i∈S
wi = 1, we must have |S| = 1.

We still obtain relations for any weight data since one can always modify w a
bit such that the moduli space Mg,w does not change (whereas Qg,w(P1, d) will
change). It is even not necessary to allow that there exist points of weight 1 at all
but it is interesting to see different ways of obtaining the same relations.

6.1. Statement of the stable quotient relations. Let G be the set of stable
graphs describing the strata on Mg,w. The data of G in particular includes a map p
from {1, . . . , n} to the set of vertices as in Section 3.1. Let us assume that the first
n′ points are of weight different from 1 and the remaining n′′ points are of weight
1.
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Proposition 3. For a codimension r, a degree d, an n-tuple a such that g − 2d−
1 + |a| < r − |E|, in Ar(Mg,w) the relation

0 =

[ ∑

Γ∈G
ζ:Γ→{±1}

1

Aut(Γ)
ξΓ∗
(∏

v

Vertex3ζ(v)
v

∏

e

Edge3ζ(v1),ζ(v2)
e

n∏

i=n′+1

Point3(ψiζ(p(i))t, pi)
)]

tr−|E|xdpa

holds, where Vertex3ζ
v is a product

Vertex3ζ
v = ζg(v)−1 exp

(
−1

2
ζp(v) + {exp(p(v)D)γ(tζ, x)}∆(v) + V ζ

)

in A∗(Mg(v),wv )[x, t,p], where p(v) =
∑
n′≥i∈p−1(v) pi, {}∆(v) is defined identically

compared to {}∆ but κj is replaced by κ
(v)
j — the κj class at v — and

V ζ = −
∑

i≥1

B2i

2i · (2i− 1)

∑

∆∈DG

1

Aut(∆)
ξ∆,∗

(
ψ2i−1
a + ψ2i−1

b

ψa + ψb

)
(ζt)2i−1.

Here DG ⊆ G is the set of graphs corresponding to divisor classes, i.e. graphs with
only one edge, and ψa, ψb are the two cotangent line classes corresponding to the
unique node corresponding to a divisor. The edge and point series are given by

t(ψ1 + ψ2)Edge3ζ1,ζ2
e = (Φ′(tζ1ψ1)Φ′(tζ2ψ2))−1 ζ1 + ζ2

2
+

ζ1δ(tζ1ψ1, x) + ζ2δ(tζ2ψ2, x),

where Φ′ is from Section 5, and

Point3(t, p) = 1 + pδ(t, x).

6.2. Proof of the stable quotient relations. In Section 4.2 we looked at the
integrand sb coming from powers of the pulled back first Chern class of the universal
sheaf S over Cg|n(P1, d). This works also well for Qg|w(P1, d) if no point is of weight
1. For the points of weight 1 we however need to choose different classes since by
the stability conditions the torsion of S must be away from the sections of points
of weight 1. Instead we will pull back classes from P1 via evaluation maps.

For an n-tuple a, which can be split into an n′-tuple a′ and an n′′-tuple a′′, we
will thus study the equivariant class

ϕ(a) := s̃a
′

n∏

i=n′+1

ev∗i

((
[0] + [∞]

2

)ai)
∈ A|a|C∗(Qg,w(P1, d)),

where [0] and [∞] are the equivariant classes of 0 and∞ respectively, and s̃a
′

is the
equivariant class from Section 4.2. Since A∗C∗(P1)⊗Q[s, s−1] is a two dimensional
Q[s, s−1] module we do not lose any relations by considering only the case when a′′

is {0, 1} valued.
As before we consider the sc part of the push-forward of ϕ(a) for c < 0 when

using the virtual localization formula.
In order to gain overview over the in d monotonously growing number of fixed

loci we sort them according to the stratum of Mg,w they push forward to. Let us
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Figure 1. An edge and a point chain

0 +1

∞ −1

P1 ζ

Mg(v),w(v)
de1

dv1

de2

dv2

de3

dv3

de4

dv4

de5

dv5

de6
Mg(w),w(w)

Mg(v),w(v) de1

dv1

de2

dv2

de3

dv3

de4

dv4

de5
point

consider stable graphs Γ = (V,E) of Mg,w together with a coloring ζ : V → {±1}
and a degree assignment d : V t E t {n′ + 1, . . . , n} → Z≥0. This data records
coloring and the d|V from a stable quotient graph, the total degrees of the chains
which destabilize to a node or a weight 1 marked point when pushing forward to
Mg,w. To get back to a stable quotient graph one needs to choose for each edge and
each weight 1 marked point of degree d a splitting d = de1 +dv1

+· · ·+dv`−1
+de` of d

corresponding to the degrees on the chain (see Figure 1). Because of the conditions
on the coloring of a stable graph there is a mod 2 condition on the length ` of
the chains depending on the color at the connection vertices or a. If we had not
imposed (11), we would also have chains for each set of marked points of total
weight exactly 1.

The fixed loci corresponding to such a decorated stable graph are, up to a finite
map, isomorphic to products

∏

v

Mg(v),(w(v),εd(v))/Sd(v)

times a number of Losev-Manin factors M0,2|d/Sd corresponding to the vertices
inside the chains.

For the localization calculation we will also have to consider the pull-back of the
integrand ϕ(a) to each fixed locus. The factors ev∗i (([0] + [∞])ai) of ϕ(a) merely
restrict the coloring of the stable quotient graphs and their contribution is pulled
back from the equivariant cohomology of a point. The other factors saii need to be
partitioned along the factors of the stable quotient fixed locus. However it is easy
to see that in order for the contribution to be nonzero saii has to land at the factor
corresponding to the vertex p(i).

After all these preconsiderations let us write down the localization formula. It
will be the most convenient to write it in a power series form. We have

νvir∗ ϕ(a) =


∑

Γ,ζ,d

1

Aut(Γ)
ξΓ∗ε∗

(∏

v

Vertex1
v

∏

e

Edge1
e

n∏

i=n′+1

Point1
i

)

xdpa

,

where νvir∗ again denotes push-forward using ν after capping with the virtual fun-
damental class and the vertex, edge and point series still need to be defined.

The vertex series Vertex1
v is given by

Vertex1
v = (ζ(v)s)g(v)−1 exp(−T1)T2 ∈

∞⊕

d=0

A∗C∗(Mg(v),(w(v),εd))⊗Q[s, s−1][[x,p]]
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with

T1 =
∑

n′≥i∈p−1(v)

sipi +
1

2
ζ(v)

∑

n′≥i∈p−1(v)

spi

T2 =
∞∑

j=0

∞∑

d=0

(ζ(v)s)d−jcj(Fd)
xd

(ζ(v)s)2dd!
.

For the edge series Edge1
e we have

Edge1
e =

∞∑

d=1

xd
∑

Γde=(Ve,Ee)

1

Aut(Γde)

ζ1s

ωΓde ,1
− ψ1

ζ2s

ωΓde ,2
− ψ2

∏

f edge

Cont(f)
∏

v vertex

Cont(v),

where Γde is a stable quotient localization graph of Q0,2(P1, d) 7 with color of the
two vertices determined by ζ at the two vertices adjacent to e. The variables ζi,
di, ψi for i ∈ {1, 2} denote the color, the weight and the ψ-classes of the two
marked points corresponding to the edge respectively. The contributions Cont(f)
and Cont(v) are contributions to the calculation of the integrals

∫

Q0,2(P1,d)

ev∗1(φ1) ev∗2(φ2)

as in Section 5. By the stable quotients Gromov-Witten comparison we can replace
Q0,2(P1, d) everywhere in this paragraph by M0,2(P1, d) and then Edge1

e becomes

very similar to Eij(t1, t2, x) from Section 5.
Finally the point series Point1

i is similarly given by

Point1
i =

(s
2
ζi

)ai
+

∞∑

d=1

xd
∑

Γdi=(Vi,Ei)

1

Aut(Γdi )

ζis

ωΓdi
− ψi

∏

f edge

Cont(f)
∏

v vertex

Cont(v),

where ζi is ζ at the vertex with i, Γdi is a stable quotient localization graph of
Q0,2(P1, d) with color of the first vertex determined by ζi. Here the contributions
Cont(f) and Cont(v) are contributions to the calculation of the integrals

∫

Q0,2(P1,d)

ev∗1(φ1) ev∗2

(
φ2

(
[0] + [∞]

2

)ai)
.

The first summand corresponds to the case when the length of the chain is 0. Its
form comes from the identity [0]− [∞] = s and the fact that [0] · [∞] = 0.

6.2.1. Pushing forward. Next we will study the ε-push-forward in the formula for
νvir∗ ϕ(a). For this we want to replace the ψ-classes in the edge and point terms by
ψ-classes pulled back via ε, since the other ψ-classes are already pull-backs. For
a fixed localization graph ε is a composition of local maps, one for each vertex in

7which is here a chain similar to the first in Figure 1
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the graph, of the form Mg(v),(w(v),εd(v)) → Mg(v),w(v), and one for each edge and

marked point which contracts products of factors of the form M0,2|d.
Let us first look at the push-forward local to a vertex. For this we only need to

look at the product of the vertex term with the factors of the form

1

ωi − ψi
from the adjacent edge and point series. Let us simplify the notation for this
local discussion. With d we denote the degree at this vertex, with n = n′ + n′′

the number of marked points with weight different or equal to 1 respectively, and
with w the weights at the vertex. We will index the marked points by the set
{1, . . . , n} t {1, . . . , d}. Hopefully the non-empty intersection of these sets will not
cause any confusion.

The basic pull-back formula is that

ψi = ε∗(ψi) + ∆i1

in the case that d = 1. Here ∆i1 is the boundary divisor of curves who have one
irreducible component of genus 0 containing only i and the weight ε point. This
generalizes to the formula

ψki = ε∗(ψki ) + ε∗(ψk−1
i )

∑

∅6=T⊂{1,...,d}
∆iT ,

where ∆iT is the boundary divisor of curves who have one genus 0 irreducible
component containing only i and the weight ε points indexed by T . Thus

1

ωi − ψi
=

1

ωi − ε∗(ψi)


1 + ω−1

i

∑

∅6=T⊂{1,...,d}
∆iT


 .

Modulo factors pulled back via ε the most general classes we will need to push
forward are products of factors of the form

• DiS for i ∈ {1, . . . , n′}, S ⊂ {1, . . . , d},
• ∆iT for i ∈ {n′ + 1, . . . , n}, T ⊂ {1, . . . , d},
• M , a monomial in ψ- and diagonal classes of the d points of weight ε.

In order for the push-forward to be nonzero the sets S and T must be pairwise
disjoint. Moreover for each factor ∆iT , the diagonal class corresponding to T must
be a connected factor of M .

Therefore for a monomial M =
∏
i∈P Mi corresponding to a set partition P `

{1, . . . , d} we obtain

ε∗




n∏

i=n′+1


1 +

∑

∅6=T⊂{1,...,d}
ω−1
i ∆iT


 exp




n′∑

i=1

sipi


M


 =

∏

i∈P


δ∆

i

n∑

j=n′+1

ω−1
j + εi∗


exp




n′∑

j=1

sjpj


Mi




 ,
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where here δ∆
i is one if Mi is a diagonal class and zero otherwise and the εi are

forgetful maps εi : Mg,(w,ε|i|) →Mg,w
8. Notice that the push-forward is a product

where each factor is dependent only on one factor of M .
This allows us to use the arguments from Section 4.2.2 to calculate the necessary

ε-push-forwards modulo classes pulled back via ε. We obtain

(12)

∞∑

d=0

ε∗

n∑

i=n′+1


1 +

∑

∅6=T⊂{1,...,d}
ω−1
i ∆iT


 exp




n′∑

i=1

sipi




∞∑

j=0

(ζs)d−jcj(−Bd)
xd

(ζs)2dd!
=

n∏

i=n′+1

exp

(
uζ

ωi
− log(Φ′)

(
ψi
ζ(v)s

,
x

ζ(v)s

))

exp

({
exp(−pD) log(Φ)

(
t

ζ(v)s
,

x

ζ(v)s

)}

∆

) ∣∣∣
t=1

,

where uζ is as in (10) and p = p1 + · · ·+ pn′ . Here we rather artificially introduced
a variable t to make use of the bracket notation. Notice that in the first factor
of this formula the factor corresponding to some i ∈ {n′ + 1, . . . , n} depends only
on ωi, which dependends on the degree splitting of the chain, whereas the second
factor is independent of the degree splittings.

Now we can again step back from the vertex and look at the global picture. With
(12) we can give a new formula for νvir∗ ϕ(a)

νvir∗ ϕ(a) =


∑

Γ,ζ

1

Aut(Γ)
ξΓ∗

(∏

v

Vertex2
v

∏

e

Edge2
e

n∏

i=1

Point2
i

)

xdpa

,

with new vertex, edge and point series. The term Vertex2
v already has the form as

in the stable quotient relations

Vertex2
v = (ζ(v)s)g(v)−1

exp

(
−1

2
ζ(v)sp(v) +

{
exp(p(v)sD) log(Φ)

(
t

ζ(v)s
,

x

(ζ(v)s)2

)}

∆(v)

∣∣∣
t=1

+ V ′ζ(v)

)
,

where

V ′ζ =
∞∑

j=0

(ζs)−jcj(E∗) ∈ A∗(Mg(v),wv )[s, s−1][[x, s, s−1]].

Furthermore the edge and point series are given by

Edge2
e =Φ′

−1
(
ψ1

ζ1s
,
x

ζ1s

)
Φ′
−1
(
ψ2

ζ2s
,
x

ζ2s

)

∞∑

d=1

xd
∑

Γde=(Ve,Ee)

1

Aut(Γde)

ζ1se
uζ1/ω

Γde,1

ωΓde ,1
− ψ1

ζ2se
uζ2/ω

Γde,2

ωΓde ,2
− ψ2

∏

f edge

Cont(f)
∏

v vertex

Cont(v)

8To think of Mi as living on Mg,(w,ε|i|) one needs to choose a bijection i → {1, . . . , |i|} but

the εi-push-forward is independent of that choice.
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and

Point2
i =Φ′

−1
(
ψi
ζis

,
x

ζis

)

∞∑

d=0

xd
∑

Γdi=(Vi,Ei)

1

Aut(Γdi )

ζise
uζi/ω

Γd
i

ωΓdi
− ψi

∏

f edge

Cont(f)
∏

v vertex

Cont(v).

Using Mumford’s formula (pulled back from Mg to Mg,w) we find

V ′ζ =−
∑

i≥1

B2i

2i · (2i− 1)
κ2i−1(ζs)1−2i

−
∑

i≥1

B2i

2i · (2i− 1)

∑

∆∈DG

1

Aut(∆)
ξ∆,∗

(
ψ2i−1
a + ψ2i−1

b

ψa + ψb

)
(ζs)1−2i.

Notice that the edge series Edge2
e modulo a slight change in notation and the

Φ′−1
factors is the series Eij(ψ1, ψ2, x) from Section 5, where i and j correspond

to the color of the vertices e connects. Similarly we identify the point term Point2
i

up to the Φ′−1
-factor with

2−ai
(
saiP i0(ψi, x) + (−s)aiP i∞(ψi, x)

)
.

We finally obtain the relations by taking the sc part of νvir∗ ϕ(a) for c < 0. So
we replace everywhere s by t−1, x by xt2 and p(v) by p(v)t

−1. After dividing out a
common factor of te for

e =
∑

v

(−g(v) + 1) + 2d+ |a| = −g + 1 + |E|+ 2d+ |a|

and introducing variables pi for the a′′i we arrive at the stable quotient relations of
Section 6.1.

6.3. Evaluation of the relations.

6.3.1. Minor simplification. With the same proof as in Section 4.3.2 the stable
quotient relations are implied from the stable quotient relations in the case that
the n′-tuple a′ is only {0, 1}-valued. The same holds trivially for a′′ because of the
form of the point term.

Furthermore the relations in the case that a point is of weight 1 and a point
is of weight slightly smaller than 1 are the same. This is because a point i of
weight slightly smaller than 1 is not allowed to meet any other point, therefore the
contribution of that point, which is solely in the vertex contribution, is

exp

(
−1

2
ζ(p(i))pi + piDγ(tζ(p(i))ψi, x)

)
≡ 1+piζ(p(i))δ(tζ(p(i))ψi, x) (mod p2

i )

This is the point term after suitably renaming pi.
Therefore we can from now on treat points of weight 1 the same way as points

of weight slightly less than 1.
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6.3.2. Edge terms. The factor exp(V ζ) of the vertex contribution to the stable
quotient relations contains intersections of classes supported on divisor classes of
Mg(v),wv . We want to reformulate the relations such that the vertex term only
contains κ-, diagonal and ψ-classes corresponding to the markings. Some excess
intersection calculations will be necessary to deal with exp(V ζ).

Proposition 4. The set of stable quotient relations is equivalent to the following
set of relations: Under the conditions of Proposition 3 it holds

0 =

[ ∑

Γ∈G
ζ:Γ→{±1}

1

Aut(Γ)
ξΓ∗
(∏

v

Vertex4ζ(v)
v

∏

e

Edge4ζ(v1),ζ(v2)
e

)]

tr−|E|xdpa

,

with

Vertex4ζ
v = ζg(v)−1 exp

(
1

2
ζp(v) + {exp(p(v)D)γ(tζ, x)}∆(v)

)
,

where p(v) =
∑
i∈p−1(v) pi, and

t(ψ1+ψ2)Edge4ζ1,ζ2
e =

ζ1 + ζ2
2

exp(−γ′(tζ1ψ1)−γ′(tζ2ψ2))+ζ1δ(tζ1ψ1)+ζ2δ(tζ2ψ2),

where γ′ is defined in the same way from Φ′ as γ is from Φ:

γ′ =
∑

i≥1

B2i

2i · (2i− 1)
t2i−1 + log(Φ′)

Remark 3. As in Section 4.3.2 we can also write

Vertex4ζ
v = ζg(v)−1 exp

(
−{γ}ζ

κ(v) +
∞∑

i=1

ζi

i!
{pi(v)D

i−1δ}ζ
∆(v)

)
.

The power ζi appears because of the t in D = tx d
dx .

The proof of Proposition 4 depends on the following lemma.

Lemma 7. For a polynomial f in two variables we have

exp

( ∑

∆∈DG

1

|Aut(∆)|ξ∆,∗(f(ψa, ψb))

)
=

∑

Γ∈G

1

|Aut(Γ)|ξΓ,∗
(∏

e

exp(−f(ψ
(e)
1 , ψ

(e)
2 )(ψ

(e)
1 + ψ

(e)
2 ))− 1

−(ψ
(e)
1 + ψ

(e)
2 )

)
,

where ψ
(e)
i are the two cotangent line classes belonging to edge e.

Proof. Formally expanding the left hand side using the intersection formulas, for
example described in [8, Appendix A], we can write it as a sum over stable graphs
(Γ, E). Let us look at the term corresponding to a given graph Γ. By contracting
all but one edge of Γ one obtains a divisor graph. This process gives a map eΓ :
E → DG. Counting the preimages of eΓ gives a map mΓ : DG → N0. In the formal
expansion of the exponential on the left hand side each term also corresponds to a
function σ : DG → N0.

A term contributes to a graph Γ if and only if mΓ ≤ σ, of the |σ| intersections
|mΓ| = |E| are transversal and the others are excess. In addition, a contributing
term of the left hand side determines a partition p indexed by E of σ =

∑
e∈E pe

such that pe(∆) = 0 unless eΓ(e) = ∆.
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With this we can explicitly write down |Aut(Γ)| times the Γ-contribution as

ξΓ,∗
∑

σ≥mΓ

∑

p

∏

∆∈DG

1

σ(∆)!

(
σ(∆)

p(∆)

)

∏

e

f(ψ
(e)
1 , ψ

(e)
2 )pe(eΓ(e))(−(ψ

(e)
1 + ψ

(e)
2 ))pe(eΓ(e))−1

=ξΓ,∗
∑

σ≥mΓ

∑

p

∏

e

1

(pe(eΓ(e)))!
f(ψ

(e)
1 , ψ

(e)
2 )pe(eΓ(e))(−(ψ

(e)
1 + ψ

(e)
2 ))pe(eΓ(e))−1

=ξΓ,∗
∏

e

∞∑

i=1

1

i!
f(ψ

(e)
1 , ψ

(e)
2 )i(−(ψ

(e)
1 + ψ

(e)
2 ))i−1

=ξΓ,∗
∏

e

exp(−f(ψ
(e)
1 , ψ

(e)
2 )(ψ

(e)
1 + ψ

(e)
2 ))− 1

−(ψ
(e)
1 + ψ

(e)
2 )

.

Here the factor (σ(∆)!)−1 comes from the exponential and

∏

∆∈DG

(
σ(∆)

p(∆)

)

comes from the choice of which intersections are excess.
Summing the contributions for all Γ finishes the proof. �

Proof of the proposition. We will apply the lemma in the case that

f(x1, x2) = −
∑

i≥1

B2i

2i(2i− 1)

x2i−1
1 + x2i−1

2

x1 + x2
,

but now we also need to take care of the coloring of the vertices.
For each graph Γ ∈ G with a coloring ζ : Γ → {±1} we can construct a new

graph Γred, its reduction, by contracting all edges of Γ connecting two vertices of the
same color. The induced coloring on Γred satisfies the property that neighboring
vertices are differently colored. Let us call such a graph reduced. Having the same
reduction also defines an equivalence relation on G.

The idea is now to apply lemma 7 to each vertex of each graph Γ. In this way
we get terms at each specialization Γ′ of Γ in the same equivalence class of Γ.

Let us collect all the different contributions at a graph Γ′ coming from graphs
Γ. Recall the pull-back formula for the κ-classes

pv∗(ξ
∗
Γκi) = κi +

∑

e

ψie,

where pv denotes the projection map to the factor corresponding to each vertex v
and the sum is over all outgoing edges at v. This implies that the contributions at
Γ′ all have the same vertex contribution up a sign and a factor

exp(−γ′(tζ1ψ(e)
1 )− γ′(tζ2ψ(e)

2 ))

for each edge of Γ not in Γ′ 9. The edge terms corresponding to common edges do
exactly coincide. The different factors split into a product over the connected com-
ponents of the graph obtained by removing the edges which need to be contracted
to obtain Γ′red.

9γ′ appears here instead of γ because κ−1 = 0 while ψ−1 is not defined.
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So let us look at just one connected component Γ′′ ⊂ Γ′ \ Γ′red. We have to
sum over the possibilities E ⊆ E(Γ′′) of contracting edges in Γ′′. We thus have the
contribution

∑

E(Γ′′)=E
∐
F

ζ |E|
∏

e∈F
Edge3ζ,ζ

e

∏

e∈E

exp(−f(tζψ
(e)
1 , tζψ

(e)
2 )(tζψ

(e)
1 + tζψ

(e)
2 ))− 1

−(tζψ
(e)
1 + tζψ

(e)
2 )

exp(−γ′(tζψ(e)
1 )− γ′(tζψ(e)

2 ))

=
∏

e∈E(Γ′′)

(
Edge3ζ,ζ

e +

ζ
exp(−f(tζψ

(e)
1 , tζψ

(e)
2 )(tζψ

(e)
1 + tζψ

(e)
2 ))− 1

−(tζψ
(e)
1 + tζψ

(e)
2 )

exp(−γ′(tζψ(e)
1 )− γ′(tζψ(e)

2 ))
)

=
∏

e∈E(Γ′′)

Edge4ζ,ζ
e .

Because of

Edge3ζ,−ζ
e = Edge4ζ,−ζ

e

we can replace Edge3 by Edge4 also for the edges connecting differently colored
vertices. �

6.3.3. Variable transformations. Using the results of Section 4.3.3 we can give a
new formulation of the stable quotient relations.

We have

0 =

[ ∑

Γ∈G
ζ:Γ→{±1}

1

Aut(Γ)
ξΓ∗
(

(1 + 4y)eΓ
∏

v

Vertex5ζ(v)
v

∏

e

Edge5ζ(v1),ζ(v2)
e

)]

ur−|E|ydpa

,

with

Vertex5ζ
v = ζg(v)−1 exp


−




∞∑

k=1

k∑

j=0

ck,ju
kyj





ζ

κ

+
∞∑

i=1

ζi

i!
{pi(v)δi}ζ∆


 ,

u(ψ1 + ψ2)Edge5ζ1,ζ2
e =

ζ1 + ζ2
2

exp


−

∞∑

k=1

k∑

j=0

ck,j(uζ1ψ1)k + (uζ2ψ2)k)yj




+ζ1δ1(uζ1ψ1) + ζ2δ1(uζ2ψ2)

and the exponent

eΓ =
r + 2d− 2

2
− κ0

4
− |a|

2
=
r − g + 2d− 1− |a|

2

under the condition of Proposition 3 on r.
We can assume that eΓ is integral because otherwise the relation is zero since

the term corresponding to a coloring ζ and the opposite coloring −ζ exactly cancel
each other in this case.

Next we look as in Section 4.3.4 at the extremal coefficients of this series and
obtain the FZ relations of Proposition 1.
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6.4. Final remarks. Let R(g,w, r;S) denote the relation on Mg,w of Proposi-
tion 1 in codimension r corresponding to S ⊂ {1, . . . , n} viewed as a class in the
formal strata algebra, i.e. the formal Q-algebra generated by the symbols

ξΓ∗

(∏

v

Mv

)
,

where Γ is a stable graph of Mg,w and the Mv are formal monomials in κ-, ψ- and
diagonal classes, modulo the relations given by the formal multiplication rules for
boundary strata described in [8, Appendix A] and the relations between diagonal
and ψ- classes from 4.2.1. One can describe formal analogs of the push-forwards
and pull-backs along the forgetful, gluing and weight reduction maps.

By the way we have constructed the stable quotient relations, for w′ ≤ w the
push-forward of R(g,w, r;S) via the weight reduction map is R(g,w′, r;S). There-
fore the relations of Proposition 1 are (up to a constant factor) the push-forward
of a subset of Pixton’s generalized FZ relations.

As mentioned in the introduction more relations than in Proposition 1 can be
obtained by taking for a partition σ with no part equal to 2 (mod 3) the class

R(g, (w, 1`(σ)), r − |bσ/3c|; S̄)
∏

i

ψ
bσi/3c+1
n+i

in Ar+`(σ)(Mg,(w,1`(σ))), where S̄ equals S on the first nmarkings and is given by the
remainders when dividing the parts of σ by 3 on the other markings, and pushing
this class forward to Mg,w under the forgetful map. For explicitly calculating this
push-forward it is better to use the usual κ-classes κ̃i = π∗(c1(ωπ(D))i+1), which
are related to the κ-classes we have used in this article by κ̃i = κi +

∑n
j=1 ψ

i
j , in

order to use Faber’s formula for the push-forward of monomials in cotangent line
classes [2]. Let us call these relations R(g,w, r;σ, S).

As in [21] even more generally one can look at the Q-vector space Rg,w generated
by the relations obtained by choosing a boundary stratum corresponding to a dual
graph Γ, taking a FZ relation R(gi,wi, r;σ, S)Mi for any r, S, σ and monomial
Mi in the diagonal and cotangent line classes on one of the components, arbitrary
tautological classes on the other components and pushing this forward along ξΓ.
Because of the compatibility with the birational weight reduction maps [21, Propo-
sition 1] implies that the system Rg,w of Q-vector spaces cannot be tautologically
enlarged, i.e. it is closed under formal push-forward and pull-back along forgetful
and gluing maps as well as multiplication with arbitrary tautological classes.

As in [19] we have thrown away many of the stable quotient relations: We looked
only at the extremal relations in Sections 4.3.4 and 6.3.3. However we should expect
that these additional relations can also be expressed in terms of FZ relations.
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Abstract

Pandharipande-Pixton-Zvonkine’s proof of Pixton’s generalized Faber-
Zagier relations in the tautological ring of Mg,n has started the study of
tautological relations from semisimple cohomological field theories. In this
article we compare the relations obtained in the examples of the equivari-
ant Gromov-Witten theory of projective spaces and of spin structures. We
prove an equivalence between the P1- and 3-spin relations, and more gen-
erally between restricted Pm-relations and similarly restricted (m+2)-spin
relations. We also show that the general Pm-relations imply the (m+ 2)-
spin relations.

1 Introduction

The study of the Chow ring of the moduli space of curves was initiated
Mumford in [11]. Because it is difficult to understand the whole Chow
ring in general, the tautological subrings of classes reflecting the geom-
etry of the objects parametrized by the moduli space were introduced.
The tautological ring R∗(Mg,n) is compactly described [2] as the smallest
system

R∗(Mg,n) ⊆ A∗(Mg,n)

of subrings compatible with push-forward under the tautological maps,
i.e. the maps obtained from forgetting marked points or gluing curves
along common markings.

There is a canonical set of generators parametrized by decorated graphs
[5]. The formal vector space Sg,n generated by them, the strata algebra,
therefore admits a surjective map to R∗(Mg,n) and the structure of the
tautological ring is determined by the kernel of this surjection. Elements
of the kernel are called tautological relations.

In [15] A. Pixton proposed a set of (at the time conjectural) relations
generalizing the relations of Faber-Zagier in R∗(Mg). Furthermore, he
conjectured that these give all tautological relations. The first proof [13] of
the fact that the conjectural relations are actual relations (in cohomology)
brought cohomological field theories (CohFTs) into the picture.
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A CohFT on a free module V of finite rank over a base ring A is a
system of classes Ωg,n behaving nicely under pull-back via the tautological
maps. A CohFT can also be used to give V the structure of a Frobenius
algebra. The CohFT is called semisimple if, after possible base extension,
the algebra V has a basis of orthogonal idempotents.

For semisimple CohFTs there is a conjecture by Givental [3] proven
in some cases by himself and in full generality in cohomology by Teleman
[16], giving a reconstruction of the CohFT from its genus 0, codimension
0 part and the data of a power series R(z) of endomorphisms of V . The
formula naturally lifts to the strata algebra.

To get relations from a semisimple cohomological field theory we can
use that the reconstructed CohFT of elements in the strata algebra is
in general only defined over an extension B ← A. However since we
have started out with a CohFT over A, this implies that certain linear
combinations of elements in the strata algebra have to vanish under the
projection to the tautological ring.

This procedure was essentially used in the proof [13] in the special
example of the CohFT defined from Witten’s 3-spin class. There the base
ring is a polynomial ring in one variable but the reconstructed CohFT
seems to have poles in this variable.

In [14] (in preparation) the authors construct tautological relations us-
ing Witten’s r-spin class for any r ≥ 3. Given a list of integers a1, . . . , an ∈
{0, . . . , r − 2}, Witten’s class Wg,n(a1, . . . , an) is a cohomology class on
Mg,n of pure degree

Dg,n(a1, . . . , an) =
(r − 2)(g − 1) +

∑n
i=1 ai

r
.

Witten’s class can be “shifted” by any vector in the vector space 〈e0, . . . ,
er−2〉 to obtain a semisimple CohFT. In practice, the authors use two
particular shifts for which the answer can be explicitly computed. Shifted
Witten’s class is of mixed degree: more precisely, the degrees of its com-
ponents go from 0 to Dg,n(a1, . . . , an). On the other hand, the Givental-
Teleman classificiation of semisimple CohFTs gives an expression of the
shifted Witten class in terms of tautological classes. The authors conclude
that the components of this expression beyond degree Dg,n(a1, . . . , an) are
tautological relations.

This article studies how relations from spin structures are related to the
relations obtained from the CohFT defined from the equivariant Gromov-
Witten theory of projective spaces. The following two theorems are our
main results.

Theorem 1 (rough version). The relations obtained from the equivariant
Gromov-Witten theory of Pm imply the (m+ 2)-spin relations.

Theorem 2 (rough version). A special restricted set of relations from
equivariant Pm is equivalent to a corresponding restricted set of (m+ 2)-
spin relations. For P1 and 3-spin no restriction is necessary.

Since for equivariant Pm the reconstruction holds in Chow, Theorem 1
implies that the higher spin relations also hold in Chow.

We will give strong evidence that the method of proof for Theorem 2
cannot directly be extended to an equivalence between the full Pm- and
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(m + 2)-spin relations for m > 2. Possibly, there are more Pm- than
(m+ 2)-spin relations.

Any of the theorems gives another proof of the fact that Pixton’s
relations hold in Chow. In fact, the proof of Theorem 1 in the case m = 1
is essentially a simplified version of the author’s previous proof in [8].

This article does not give a comparison between relations from CohFTs
of different dimensions, nor does it consider all relations from equivariant
Pm. On the other hand, if indeed Pixton’s relations are all tautological
relations, the 3-spin relations have to imply the relations from any other
semisimple CohFT. Yet, for example it not clear how the 4-spin relations
can be written in terms of 3-spin relations.

The article is structured as follows. In Section 2 we give definitions of
CohFTs, discuss the R-matrix action on CohFTs and the reconstruction
result. We then in Section 2.5 turn to the two examples of equivariant
Pm and the CohFT from the Am+1-singularity. In Section 2.6 we describe
the general procedure of obtaining relations from semisimple CohFTs and
general methods of proving that the relations from one CohFT imply
the relations from another. We then state precise versions of Theorem 1
and 2. Section 3 discusses explicit expression of the R-matrices in both
theories in terms of asymptotics of oscillating integrals. The constraints
following from these expressions will be used in the next sections. We also
note a connection to Airy functions. Section 4 and Section 5 give proofs
of Theorem 1 and 2. Finally, Section 6 gives evidence why, with the
methods used in the proofs of the theorems, an equivalence between Pm-
and (m+2)-spin relations cannot be established. Since the reconstruction
result of Givental we use to get relations in Chow has never appeared
explicitly in the literature, we recall its proof in Appendix A.
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2 Cohomological field theories

2.1 Definitions

Cohomological field theories were first introduced by Kontsevich and Ma-
nin in [10] to formalize the structure of classes from GW-theory. Let A
be an integral, commutative Q-algebra, V a free A-module of finite rank
and η a non-singular bilinear form on V .
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Definition 1. A cohomological field theory (CohFT) Ω on (V, η) is a
system

Ωg,n ∈ A∗(Mg,n)⊗Q (V ∗)⊗n

of multilinear forms with values in the Chow ring of Mg,n satisfying the
following properties:

Symmetry Ωg,n is symmetric in its n arguments

Gluing The pull-back of Ωg,n via the gluing map

Mg1,n1+1 ×Mg2,n2+1 →Mg,n

is given by the direct product of Ωg1,n2+1 and Ωg2,n2+1 with the
bivector η−1 inserted at the two gluing points. Similarly for the
gluing map Mg−1,n+2 → Mg,n the pull-back of Ωg,n is given by
Ωg−1,n+2 with η−1 inserted at the two gluing points.

Unit There is a special element 1 ∈ V called the unit such that

Ωg,n+1(v1, . . . , vn,1)

is the pull-back of Ωg,n(v1, . . . , vn) under the forgetful map and

Ω0,3(v, w,1) = η(v, w).

Definition 2. The quantum product (u, v) 7→ uv on V with unit 1 is
defined by the condition

η(uv,w) = Ω0,3(u, v, w). (1)

Definition 3. A CohFT is called semisimple if there is a base extension
A→ B such that the algebra V ⊗A B is semisimple.

2.2 First Examples

Example 1. For each Frobenius algebra there is the trivial CohFT (also
called topological field theory or TQFT) Ωg,n characterized by (1) and
that

Ωg,n ∈ A0(Mg,n)⊗ (V ∗)⊗n.

Let us record an explicit formula for Appendix A: In the case that the Fro-
benius algebra is semisimple, there is a basis εi of orthogonal idempotents
of V and

ε̃i =
εi√
∆i

,

where ∆−1
i = η(εi, εi), is a corresponding orthonormal basis of normalized

idempotents. We have

Ωg,n(ε̃i1 , . . . , ε̃in) =





∑
j ∆g−1

ij
, if n = 0,

∆
2g−2+n

2
i1

, if i1 = · · · = in,

0, else.

Example 2. The Chern polynomial ct(E) of the Hodge bundle E gives a
1-dimensional CohFT over Q[t].
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Example 3. Let X be a smooth, projective variety such that the cycle
class map gives an isomorphism between Chow and cohomology rings. Let
A = Q[[qβ ]] be its Novikov ring. Then the Gromov-Witten theory of X
defines a CohFT based on the A-module A∗(X)⊗A by the definition

Ωg,n(v1, . . . , vn) =
∑

β

π∗

(
n∏

i=1

ev∗i (vi) ∩ [Mg,n(X,β)]vir
)
qβ ,

where the sum ranges over effective, integral curve classes, evi is the i-th
evaluation map and π is the forgetful map π : Mg,n(X,β) → Mg,n. The
gluing property follows from the splitting axiom of virtual fundamental
classes. The fundamental class of X is the unit of the CohFT and the
unit axioms follow from the identity axiom in GW-theory.

For a torus action onX, this example can be enhanced to give a CohFT
from the equivariant GW-theory of X.

2.3 The R-matrix action

Definition 4. The (upper part of the) symplectic loop group is defined
as the subgroup of the group of endomorphism valued power series R =
1 +O(z) in z satisfying the symplectic condition

η(R(z)v,R(−z)w) = η(v, w)

for all vectors v and w.

An action of this group on the space of CohFTs makes it interesting for
us. In its definition the endomorphism valued power series R is evaluated
at cotangent line classes and applied to vectors.

Given a CohFT Ωg,n the new CohFT RΩg,n takes the form of a sum
over dual graphs Γ

RΩg,n(v1, . . . , vn) =
∑

Γ

1

Aut(Γ)
ξ∗

(∏

v

∞∑

k=0

1

k!
ε∗Ωgv,nv+k(. . . )

)
,

where ξ :
∏
vMgv,nv → Mg,n is the gluing map of curves of topological

type Γ from their irreducible components, ε : Mgv,nv+k →Mgv,nv forgets
the last k markings and we still need to specify what is put into the
arguments of

∏
v Ωgv,nv+kv .

• Into each argument corresponding to a marking of the curve, put
R−1(ψ) applied to the corresponding vector.

• Into each pair of arguments corresponding to an edge put the bivec-
tor

R−1(ψ1)η−1R−1(ψ2)t − η−1

−ψ1 − ψ2
∈ Hom(V ∗, V )[[ψ1, ψ2]] ∼= V ⊗2[[ψ1, ψ2]],

where one has to substitute the ψ-classes at each side of the normal-
ization of the node for ψ1 and ψ2. By the symplectic condition this
is well-defined.
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• Into each of the additional arguments for each vertex put

T (ψ) := ψ(1−R−1(ψ))1,

where ψ is the cotangent line class corresponding to that vertex.
Since T (z) = O(z2) the above k-sum is finite.

Reconstruction Conjecture (Givental). The R-matrix action is free
and transitive on the space of semisimple CohFTs based on a given Fro-
benius algebra.

Theorem 3 (Givental[3]). Reconstruction for the equivariant GW-theory
of toric targets holds in Chow.

Theorem 4 (Teleman[16]). Reconstruction holds in cohomology.

Remark 1. Givental’s original conjecture was only stated in terms of the
descendent integrals of the CohFT and there is no explicit proof of Theo-
rem 3 in the literature. Therefore in Appendix A we recall the well-known
lift of Givental’s proof to CohFTs.

Example 4. By Mumford’s Grothendieck-Riemann-Roch calculation [11]
the single entry of the R-matrix taking the trivial one-dimensional CohFT
to the CohFT from Example 2 is given by

exp

( ∞∑

i=1

B2i

2i(2i− 1)
(tz)2i−1

)
,

where B2i are the Bernoulli numbers, defined by

∞∑

i=0

Bi
xi

i!
=

x

ex − 1
.

More generally, if we consider a more general CohFT given by a product
of Chern polynomials (in different variables) of the Hodge bundle, the
R-matrix from the trivial CohFT is the product of the R-matrices of the
factors.

2.4 Frobenius manifolds and the quantum differ-
ential equation

There is a natural way to deform a CohFT Ωg,n on V over A to a CohFT
over A[[V ]]. For a basis {eµ} of V let

p =
∑

tµeµ

be a formal point on V . Then the deformed CohFT is given by

Ωpg,n(v1, . . . , vn) =

∞∑

k=0

1

k!
π∗Ωg,n+k(v1, . . . , vn, p, . . . , p).

Notice that the deformation is constant in the direction of the unit.
The quantum product on the deformed CohFT gives V the structure

of a (formal) Frobenius manifold [1]. The eµ induce flat vector fields on
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V corresponding to the flat coordinates tµ. Greek indices will stand for
flat coordinates with an exception stated in Section 2.5.

A Frobenius manifold is called conformal if it admits an Euler vector
field, i.e. a vector field E of the form

E =
∑

µ

(αµt
µ + βµ)

∂

∂tµ
,

such that the quantum product, the unit and the metric are eigenfunctions
of the Lie derivative LE with eigenvalues 1, −1 and 2−δ respectively. Here
δ is a rational number called conformal dimension. Assuming that A itself
is the ring of (formal) functions of a variety X we say that the Frobenius
manifold is quasi-conformal if there is vector field E on X × V satisfying
the axioms of an Euler vector field.

A CohFT Ωg,n is called homogeneous (quasi-homogeneous) if its Fro-
benius manifold is conformal (quasi-conformal) and the extended CohFT
is an eigenvector of of LE of eigenvalue (g−1)δ+n. As the name suggests
CohFTs are homogeneous if they carry a grading such that all natural
structures are homogeneous with respect to the grading.

We say that the Frobenius manifold V is semisimple if there is a basis
of idempotent vector fields εi defined after possible base extension of A.
The idempotents can be formally integrated to canonical coordinates ui.
We will use roman indices for them. Let u be the diagonal matrix with
entries ui and Ψ be the transition matrix from the basis of normalized
idempotents corresponding to the ui to the flat basis ei.

The R-matrix from the trivial theory to Ωp satisfies a differential equa-
tion which is related to the quantum differential equation

z
∂

∂tα
Sj = eα ? Sj

for vectors Sj . We assemble the Sj into a matrix S.

Proposition 1 (see [4]). If V is semisimple and after a choice of canon-
ical coordinates ui has been made, there exists a fundamental solution S
to the quantum differential equation of the form

S = ΨReu/z, (2)

such that R satisfies the symplectic condition R(z)Rt(−z) = 1. The matrix
R is unique up to right multiplication by a diagonal matrix of the form

exp(a1z + a3z
3 + a5z

5 + · · · )

for constant diagonal matrices ai.
In the case that there exists an Euler vector field E, there is a unique

matrix R defined from a fundamental solution S by (2) which satisfies the
homogeneity

z
d

dz
R+ LER = 0.

Such an R automatically satisfies the symplectic condition.

Remark 2. The matrix R should be thought as the matrix representa-
tion of an endomorphism in the basis of normalized idempotents. The
symplectic condition in Proposition 1 is then the same as in Definition 4.
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Remark 3. The exponential in (2) has to be thought as a formal expres-
sion. All the quantities in Proposition 1 are only defined after base change
of A necessary to define the canonical coordinates.

Remark 4. The quantum differential equation is equivalent to the differ-
ential equation

[R, du] + zΨ−1d(ΨR) = 0 (3)

for R.

In the conformal case Teleman showed that the uniquely determined
homogeneous R-matrix of Proposition 1 is the one appearing in the re-
construction, taking the trivial theory to the given one.

Equivariant projective spaces Pm only give a quasi-conformal Frobe-
nius manifold. However Givental showed, and we will recall the proof in
Appendix A, that in this case in the reconstruction one should take R
such that in the classical limit q → 0 it assumes the diagonal form

R|q=0 = exp(diag(b0, . . . , bm)), (4)

where, using the notation from Section 2.5,

bj =

∞∑

i=1

B2i

2i(2i− 1)

∑

l 6=j

(
z

λl − λj

)2i−1

.

The R-matrix is uniquely determined by this additional property and the
homogeneity.

2.5 The two CohFTs

The cohomological field theory corresponding to the Am+1-singularity
f(X) = Xm+2/(m+2) is defined using Witten’s (m+2)-spin class on the
moduli of curves with (m+ 2)-spin structures. See [13] for a discussion of
different constructions of Witten’s class. In comparison to [13] we use a
different normalization for Witten’s class and a different basis for the free
module in order to have a more direct comparison to the Pm-theory.

The CohFT is based on the rank (m+ 1) free module of versal defor-
mations

ft(X) =
Xm+2

m+ 2
+ tmXm + · · ·+ t1X + t0

of f . In this article, using the deformation from Section 2.4, we will view
the CohFT as being based on

kAm+1 = Q[t1, . . . , tm],

the space of regular functions on the Frobenius manifold where the t0-
coordinate vanishes. Because of dimension constraints we do not need to
look at formal functions, and because the CohFT stays constant along the
t0 direction we can restrict to the (t0 = 0)-subspace.

The algebra structure is given by kAm+1 [X]/(f ′t), where Xµ corre-
sponds to ∂

∂tµ
. The metric is given by the residue pairing

η(a, b) =
1

2πı

∮
ab

f ′t(X)
dX.
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Written as a matrix in the basis 1, . . . , Xm, the metric η has therefore
zeros above the antidiagonal, ones at the antidiagonal and again zeros in
the first antidiagonal below it. Notice also that η has no dependence on
t1. Therefore, while the tµ do not give a basis of flat vector fields on the
Frobenius manifold, there is a triangular matrix independent of t1, sending
the 1, . . . , Xm to a basis of flat vector fields such that X is mapped to
itself. With this we can pretend that the tµ were flat coordinates if we
consider in the quantum differential equation only differentiation by t1.

For (C∗)m+1-equivariant Pm the CohFT is based on the equivariant
Chow ring

A∗(C∗)m+1(Pm)[[q]] ∼= kPm [H]/

m∏

i=0

(H − λi),

of Pm, an (m+ 1)-dimensional free module over

kPm = Q[λ0, . . . , λm][[q]],

and depends on the Novikov variable q and the torus parameters λi. We
will not consider the deformation from Section 2.4. The algebra structure
is given by the small quantum equivariant Chow ring

QA∗(C∗)m+1(Pm) ∼= kPm [H]/

(
m∏

i=0

(H − λi)− q
)

and the pairing is the Poincaré pairing

η(a, b) =
1

2πı

∮
ab∏m

i=0(H − λi)
dH

in the equivariant Chow ring.

To match up this data we set

X =H − λ̄,

Xm+1 +

m−1∑

µ=0

(µ+ 1)tµ+1Xµ =

m∏

i=0

(X + λ̄− λi)− q,

where

λ̄ =

m∑

i=0

λi
m+ 1

.

So in particular

t1 = −q +

m∏

i=0

(λ̄− λi) =: −q − λ

and we have described a ring map

Φ : kAm+1 [λ]→ kPm ,

whose image are the polynomials, symmetric in the torus parameters and
vanishing if all torus parameters coincide. Therefore, after base extension,
the Frobenius algebras from the Am+1-singularity and equivariant Pm
match completely up.
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On the Pm-side, let Qi be the power series solution to

m∏

i=0

(Y + λ̄− λi) = q

with limit λi − λ̄ as q → 0. In particular, the Qi are solutions to

Y m+1 +

m−1∑

µ=0

(µ+ 1)tµ+1Y µ.

On the Am+1-side, let the Qi be the solutions to this equation in any
order. On both sides we can then define

∆i =
∏

j 6=i
(Qi −Qj) = (m+ 1)Qmi −

m−1∑

µ=1

(µ+ 1)µtµ+1Qµ−1
i

and the discriminant

disc =
∏

i

∆i ∈ kAm+1 .

The choice of the Qi gives a bijection between the idempotents

εi =

∏
j 6=i(X −Qj)

∆i
.

We will also need to make a choice of square roots of the ∆i to be able to
define the normalized idempotents

ε̃i =

∏
j 6=i(X −Qj)√

∆i

.

The Am+1-theory is conformal with Euler vector field

E =

m∑

i=1

m+ 2− i
m+ 2

tµ
∂

∂tµ
,

while the equivariant Pm-theory is semi-conformal with Euler vector field

E = (m+ 1)q
∂

∂q
+

m∑

i=0

λi
∂

∂λi
.

2.6 Relations from CohFTs

Let Ω be a semisimple CohFT defined on V over A. Formal properties
of the reconstruction theorem will imply tautological relations. The main
point is that the R-matrix from the trivial theory written in flat coordi-
nates lives only in

End(V ⊗A B)[[z]],

for some Q-algebra extension B1 of A. Let C be the A-module quotient
fitting into the exact sequence

0→ A→ B
p−→ C → 0. (5)

1In our examples B = A[disc−1].
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The reconstruction gives elements

Ωg,n ∈ Sg,n ⊗ (V ∗)⊗n ⊗B.

However since we have started out with a CohFT defined over A, we know
that the projection of

p(Ωg,n) ∈ Sg,n ⊗ (V ∗)⊗n ⊗ C

to R∗(Mg,n)⊗(V ∗)⊗n⊗C has to vanish2. Since C is a Q-vector space, we
obtain a system of vector spaces TΩ

g,n of relations. The complete system
T̄Ω
g,n of tautological relations obtained from the CohFT Ω is the vector

space generated by

ξ∗(π∗(T
Ω
g1,n1+mP )× Sg2,n2 × · · · × Sgk,nk ),

where P is the vector space of polynomials in ψ-classes, and ξ∗ and π∗
are the formal analogues of the push-forwards along gluing and forgetful
maps.

We say that a vector space of tautological relations Tg,n implies an-
other T ′g,n if the vector space, obtained from Tg,n by the completion pro-
cess as described right above, is contained in T ′g,n. Using this definition
we can also define an equivalence relation between vector spaces of tau-
tological relations.

Let us describe two relation preserving actions on the space of all Coh-
FTs on V over A. The first is an action of the multiplicative monoid of
A. The action of ϕ ∈ A is given by multiplication by ϕd in codimension
d. This replaces the R-matrix R(z) of the theory by R(ϕz). Since mul-
tiplication by ϕ is well-defined in C, relations are preserved. The second
action is the action of an R-matrix defined over A.

The second action automatically proves equivalence of relations since
R-matrices are always invertible. Similarly, the first action proves equiv-
alence if ϕ is invertible.

Extending scalars also preserves relations. By this we mean tensoring
Ω with A → A′ under the condition that this preserves the exactness of
the sequence (5). We call the special case when A′ = A/I for some ideal
I of A a limit. If C → C ⊗A A′ is injective, extending scalars proves an
equivalence of relations.

Let us again state our now well-defined results.

Theorem 1. The relations from the equivariant Gromov-Witten theory of
Pm imply the (m+2)-spin relations, both CohFTs as defined in Section 2.5.

The main statement necessary to be proven here is that the R-matrix
for Pm after replacing z 7→ zλ−1 admits the limit λ−1 → 0 and that this
limit is the R-matrix for the Am+1-theory. In order for this to make sense,
one uses the matchup from Section 2.5 and views both as being defined
over

Q[[λ0, . . . , λm, q]][λ
−1]

In Section 3 we will see that for both original theories to define the R-
matrix it is enough to localize by disc. So the extension of scalars does
not lose relations.

2Assuming that reconstruction holds in this case.
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Motivated from Section 3.1 let us call the limit t2, . . . , tm = 0 the Airy
limit. For Pm the Airy limit concretely means, assuming the sum of all
torus weights is zero, that we restrict ourselves to the case that up to a
factor the torus weights are the (m+ 1)-th roots of unity.

Theorem 2. In the Airy limit the Pm- and (m + 2)-spin relations are
equivalent.

The main point for the proof is to show there is a series

ϕ ∈ λQ[[t1λ−1]],

and an R-matrix R without poles in disc such that the Airy limit Pm-R-
matrix is obtained from the Airy limit Am+1-R-matrix by applying the
transformation z 7→ zϕ, followed by the action of R. We will show in the
proof that there is only one possible choice for ϕ. For Theorem 2 both
theories can be viewed as living over

Q[[λ0, . . . , λm, q, t
1λ−1]][λ−1]/(t1 + q + λ, t2, . . . , tm).

In Section 6 we will give evidence that the method of proof of Theo-
rem 2 does not work outside the Airy limit. What we will show is that
assuming a procedure as in the proof of Theorem 2 exists and is well-
defined in the Airy limit, the information that ϕ was unique in the limit
implies that the R-matrix in the R-matrix action cannot be defined over
the base ring.

Relations from degree vanishing

The more classical way of [13] and [14] to obtain tautological relations
works by considering cohomological degrees: Assume that Ω is in addi-
tion quasi-homogenous for an Euler vector field E and that all βi vanish
and all αi are positive. Then the quasi-homogeneity implies that the
cohomological degree of Ωg,n( ∂

∂ti1
, . . . , ∂

∂tin
) is bounded by

(g − 1)δ + n−
∑

j

αij .

However the reconstructed theory might also contain terms of higher coho-
mological degree. These thus have to vanish, giving tautological relations.

Notice that these relations coming from degree considerations are im-
plied from the relations we have described previously: With respect to
the grading on B induced by the Euler vector field, no element of A has
negative degree. Therefore the negative degree parts of B and C are iso-
morphic. Thus, the homogeneity of the CohFT implies that the degree
vanishing relations are obtained from the previous relations by restricting
to the negative degree part of C.

The way of obtaining tautological relations by looking at poles in the
discriminant has already previously been studied by D. Zvonkine.
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3 Oscillating integrals

3.1 For the Am+1-singularity

We want to describe the Am+1-R-matrix in terms of asymptotics of os-
cillating integrals. For the purposes of this article the integrals can be
treated as purely formal objects.

The quantum differential equation with one index lowered says that

z
∂

∂t1
Sµk =S(µ+1)k, for µ < m,

z
∂

∂t1
Smk =−

m−1∑

µ=0

(µ+ 1)tµ+1Sµk,

where the Greek indices stand for components in the basis of the Xµ. It
is not difficult to see that the oscillating integrals

1√
−2πz

∫

Γk

xµ exp(ft(x)/z)dx,

where ft as before is the deformed singularity, for varying cycles Γk, if
convergent, provide solutions to this system of differential equations, and
also satisfy homogeneity with respect to the Euler vector field.

For generic choices of parameters, to each critical point Qk there corre-
sponds a cycle Γk constructed via the Morse theory of <(ft(x)/z), which
moves through that critical point in the direction of steepest descent and
avoids all other critical points. By moving to the critical point and scaling
coordinates we obtain

Sµk =
euk/z√
2π∆k

∫ (
x(−z)1/2

√
∆k

+Qk

)µ

exp

(
−
m+2∑

l=2

xl(−z)(l−2)/2

l!

f
(l)
t (Qk)

∆
l/2
k

)
dx,

where uk = ft(Qk). By the method of steepest descend, we obtain the
asymptotics as z → 0 by expanding the integrand as a formal power
series in z and integrating from −∞ to ∞. Since the (l = 2)-term in the
sum is −x2/2, we can use the formula for the moments of the Gaussian
distribution to write the asymptotics of

√
∆ke

−uk/zSµk as a formal power
series in z with values in kAm+1 [Qk,∆

−1
k ].

The entries of the R-matrix are then given by

Rik � 1√
∆i

e−uk/z
∏

j 6=i

(
∂

∂t1
−Qj

)
S0k.

Noticing that the change of basis from normalized idempotents to the
basis 1, X, . . . ,Xm can be defined over kAm+1 [Qk,∆

−1/2
k ], recalling that

disc =
∏

∆i and applying Galois theory, we see that the endomorphism
R is defined over kAm+1 [disc−1].
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In the Airy limit t2, . . . , tm → 0 the quantum differential equation
becomes the slightly modified higher Airy differential equation [9]

(
z
∂

∂t1

)m+1

S0k = −t1S0k.

The entries of the R-matrix in this case are therefore related to the asymp-
totic expansions of the higher Airy functions and their derivatives when
their complex argument approaches ∞.

In the case of the A2-singularity we do not need to take any limit
and discover the hypergeometric series A and B of Faber-Zagier in the
expansions of the (slightly modified) usual Airy function

e
2
3

(t1)3/2/z

√
−2πz

∫

Γk

e

(
x3

3
+t1x

)
/z

dx � 1√
2π∆

∞∫

−∞

exp

(
−x

2

2
− x3

3

√−z
∆3/2

)
dx

� 1√
∆

∞∑

i=0

(6i− 1)!!

(2i)!

( −z
9∆3

)i
=

1√
∆

∞∑

i=0

(6i)!

(3i)!(2i)!

( −z
72∆3

)i

and a derivative of it

e
2
3

(t1)3/2/z

√
−2πz

∫

Γk

xe

(
x3

3
+t1x

)
/z

dx �
√
−t1√
∆

∞∑

i=0

(6i)!

(3i)!(2i)!

1 + 6i

1− 6i

( −z
72∆3

)i
.

Here ∆ = 2
√
−t1. The cycle Γk determines which square-root of (−t1)

we take.

3.2 For equivariant Pm

Givental [3] has given explicit solutions to the quantum differential equa-
tion for projective spaces in the form of complex oscillating integrals. Let
us recall their definition and see how they behave in the match up with
the (m+ 2)-spin theory.

Using the divisor axiom of Gromov-Witten invariants, the quantum
differential equation implies the differential equations

(D + λi)Si = H ? Si.

for the fundamental solutions Si at the origin. Here we have written
D = zq ∂

∂q
. Equivalently, the equation says

D(Sie
ln(q)λi/z) = H ? Sie

ln(q)λi/z.

Therefore the entries of S with one index lowered satisfy

(D − λ̄)(Sµie
ln(q)λi/z) = S(µ+1)ie

ln(q)λi/z,

where S(m+1)i is defined such that

m∏

j=0

(D − λj)(S0ie
ln(q)λi/z) = qS0ie

ln(q)λi/z.
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The Greek indices stand for the basis of flat vector fields corresponding
to 1, H − λ̄, . . . , (H − λ̄)m.

Givental’s oscillating integral solutions for S0i are stationary phase
expansions of the integrals

S0ie
ln(q)λi/z = (−2πz)−m/2

∫

Γi⊂{
∑
Tj=ln q}

eFi(T )/zω

along m-cycles Γi through a specific critical point of Fi(T ) inside a m-
dimensional C-subspace of Cm+1, where

Fi(T ) =

m∑

j=0

(eTj + λjTj).

The form ω is the restriction of dT0 ∧ · · · ∧ dTm. To see that the integrals
are actual solutions, notice that applying D − λj to the integral has the
same effect as multiplying the integrand by eTj .

There are m+1 possible critical points at which one can do a stationary
phase expansion of S0i. Let us write Pi = Qi + λ̄ for the solution to

m∏

i=0

(X − λi) = q

with limit λi as q → 0. For each i we need to choose the critical point
eTj = Pi − λj in order for the factor

exp(ui/z) := exp

((
m∑

j=0

(Pi − λj + λj ln(Pi − λj))− λi ln(q)

)
/z

)

of S0i to be well-defined in the limit q → 0. Shifting the integral to the
critical point and scaling coordinates by

√−z we find

S0i = eui/z
∫

exp

(
−
∑

j

(Qi − λ̄j)
∞∑

k=3

T kj (−z)(k−2)/2

k!

)
dµi

for the conditional Gaussian distribution

dµi = (2π)−m/2 exp

(
−
∑

j

(Qi − λ̄j)
T 2
j

2

)
ω.

The covariance matrices are given by

σi(Tk, Tl) =
1

∆i

{
−∏j /∈{k,l}(Qi − λ̄j), for k 6= l,∑
m 6=k

∏
j /∈{k,m}(Qi − λ̄j), for k = l.

From here we can see that the integral is symmetric in the λ̄j and therefore
we can write its asymptotics as z → 0 completely in terms of data from
Am+1. Since odd moments of Gaussian distributions vanish we find that
e−ui/zS0i is a power series in z with values in ∆

−1/2
i kAm+1 [Qi,∆

−1
i , λ].
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So the entries of the R-matrix in the basis of normalized idempotents
are given by

∆
−1/2
k

∏

j 6=k
(D + λi − Pj) (e−ui/zS0i).

Since dPi
dq

= 1
∆i

these entries are in

kAm+1 [Q0, . . . , Qm,∆
−1/2
0 , . . . ,∆−1/2

m , λ].

So, with the arguments from Section 3.1, the endomorphism R can be
defined over kPm [disc−1].

We need to check that the R-matrix given in terms of oscillating in-
tegrals behaves correctly in the limit q → 0. By definition, in this limit
Pi → λi. By symmetry it is enough to consider the 0-th column. Set
xi = eTi . Then

lim
q→0

Rj0 � lim
q→0

e−u0/z∆
−1/2
0

∏

k 6=j
(zq

d

dq
+ λj − λk) S00

= lim
q→0

e−u0/z

√
∆0(−2πz)m/2

∫
e(
∑
k(eTk−(λ0−λk)Tk))/z+

∑
k 6=j Tkω

= lim
q→0

e−u0/z

√
∆0(−2πz)m/2

∫
e

(
∑
k 6=0

(xk−(λ0−λk)Tk)+ q∏
k 6=0

xk
)/z∏

k 6=j
xj

m∧

k=1

dTk.

In the last step we have moved to the chart

x0 =
q∏

j 6=0 xj
.

Since in this chart limq→0 x0 = 0, we have that Rj0 vanishes unless j = 0.
On the other hand in the limit q → 0 the integral for R00 splits into
one-dimensional integrals

lim
q→0

R00 � lim
q→0

e−u0/z

√
∆0(−2πz)m/2

∏

k 6=0

∞∫

0

e(x−(λ0−λk) ln(x))/zdx.

Let us temporarily set zk = −z/(λ0 − λk). The prefactors also split into
pieces in the limit and we calculate the factor corresponding to k to be

e(1−ln(λ0−λk))/zk

√
−2πz(λ0 − λk)

∞∫

0

e(x−(λ0−λk) ln(x))/zdx =
e(1−ln(1/zk))/zk

√
2π/zk

Γ

(
1 +

1

zk

)

=
e(1−ln(1/zk))/zk

√
2πzk

Γ

(
1

zk

)
� exp

( ∞∑

l=1

B2l

2l(2l − 1)

(
z

λk − λ0

)2l−1
)
,

using Stirling’s approximation of the gamma function in the last step. So
the product of the factors gives the expected limit (4) of R00 for q → 0.
This calculation gives a proof for the results [7] of Ionel on the main
generating function used in [12] and [8] without having to use Harer’s
stability results.
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4 Pm relations imply (m+2)-spin relations

We prove Theorem 1 in this section. As already mentioned, for this it
is enough to show that, after the change z 7→ zλ−1, the Pm-R-matrix
converges to the Am+1-R-matrix in the limit λ→∞. For this we have to
compare the differential equations satisfied by the R-matrices.

Inserting the vector field corresponding to the hyperplane into (3) and
using the divisor equation as in Section 3.2 gives the equation

[RPm , ξ] + zq
dRPm

dq
+ zqΨ−1 dΨ

dq
RPm = 0, (6)

where ξ denotes the diagonal matrix of quantum multiplication by H− λ̄.

Lemma 1. RPm(z/λ) admits a limit R for λ→∞. The matrix R satisfies

[R, ξ] + z
dR

dt1
+ zΨ−1 dΨ

dt1
R = 0

z
dR

dz
+

m∑

µ=1

m+ 2− µ
m+ 2

tµ
dR

dtµ
= 0

Proof. The Pm-R-matrix satisfies the homogeneity property

z
dRPm

dz
+ (m+ 1)q

dRPm

dq
+

m∑

i=0

λi
dRPm

dλi
= 0.

So R′(z) := RPm(z/λ) written with the Am+1-variables satisfies

(m+ 2)z
dR′

dz
+ (m+ 1)λ

dR′

dλ
+

m∑

µ=1

(m+ 2− µ)tµ
dR′

dtµ
= 0.

The main differential equation satisfied by R′ is

[R′, ξ] + z

(
1 +

t1

λ

)
dR′

dt1
+ z

(
1 +

t1

λ

)
Ψ−1 dΨ

dt1
R′ = 0.

From the expression of RPm in terms of oscillating integrals we know that
the entries of the zi-part R′i of R′ live in

λ−ikAm+1 [Q0, . . . , Qm,∆
−1/2
0 , . . . ,∆−1/2

m , λ].

To show that the limit exists we need to show that λ occurs in no positive
power. We will show this by induction by i. It certainly holds for R′0 =
1. Since ξ is diagonal with pairwise distinct entries Qj , the zi-part of
the differential equation determines the off-diagonal coefficients of R′i in
terms of R′i−1. Because Ψ−1 dΨ

dt1
does not depend on λ, the off-diagonal

coefficients of R′i will admit the limit λ → ∞. Since Ψ−1 dΨ
dt1

in general

vanishes on the diagonal the diagonal coefficient of the zi+1-part of the

differential equation determines the diagonal of
dR′i
dt1

from the off-diagonal
entries of R′i. Apart from a possible term constant in t1 we therefore know
that also the diagonal entries of R′i admit the limit.

Let us consider such a possible ambiguity ai. Since all products of ∆j

have dependence in t1, the “denominator” of ai can only be a power of λ
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less than i. However then ai cannot possibly satisfy the homogeneity. By
induction therefore the limit R exists. The properties of R easily follow
from the corresponding ones of R′.

By inserting the vector field ∂
∂t1

into (3) and similar arguments as in
the proof of Lemma 1 one can show the following lemma.

Lemma 2. The Am+1-R-matrix is uniquely determined from the differ-
ential equation

[RAm+1 , ξ] + z
dRAm+1

dt1
+ zΨ−1 dΨ

dt1
RAm+1 = 0,

the homogeneity

z
dRAm+1

dz
+

m∑

µ=1

m+ 2− µ
m+ 2

tµ
dRAm+1

dtµ
= 0

and that the entries of the z-series coefficients of RAm+1 should lie in

kAm+1 [Q0, . . . , Qm,∆
−1/2
0 , . . . ,∆−1/2

m ].

The lemmas imply that the modified Pm-R-matrix contains only non-
positive powers of λ and the part constant in λ equals the Am+1-R-matrix.
Therefore the Am+1-relations are contained in the modified Pm-relations
as the λ0-part, and we have completed the proof of Theorem 1.

5 Equivalence of relations

We want to give a proof of Theorem 2 in this section. So we will consider
the CohFTs in the Airy limit, i.e. with all tµ but t := t1 set to zero. In
this limit the metric becomes η(Xi, Xj) = δi+j,m, the quantum product
stays semisimple and the Euler vector field for the Am-singularity

E =
m+ 1

m+ 2
t
∂

∂t

is a multiple of X.
Rewriting (6) for the Pm-R-matrix R̃Pm = ΨRPmΨ−1 written in flat

coordinates gives

[R̃Pm , ξ]− zqLER̃Pm + zqR̃Pmµ = 0,

where ξ is multiplication by E in flat coordinates and µ = −(LEΨ)Ψ−1.
We need to find a series ϕ in t and an R-matrix R sending the modified

Am+1-theory to equivariant Pm:

R̃Pm(z) = R(z)R̃Am+1(zϕ).

We know that R̃Am+1 satisfies

[R̃Am+1 , ξ] + zLER̃Am+1 − zR̃Am+1µ = 0
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and the weighted homogeneity condition

(
z

d

dz
+ LE

)
R̃Am+1 + [µ, R̃Am+1 ] = 0.

Putting these together we find that R must satisfy

0 = [R, ξ]− zqLER+ zq
LEϕ

ϕ
Rµ

+
1

ϕ

(
q + ϕ− qLEϕ

ϕ

)
R[R̃Am+1(zϕ), ξ]R̃−1

Am+1
(zϕ).

Lemma 3. The series R̃Am+1ξR̃
−1
Am+1

is not a polynomial in z.

Because of the lemma and the homogeneity of R̃Am+1 we see that in
order for R to exist in the limit disc→ 0 the function ϕ has to satisfy

q + ϕ− qLEϕ
ϕ

= 0

or equivalently
−q−1 = ϕ−1 + LEϕ

−1.

There is a unique solution ϕ−1 to this differential equation. Concretely,
we have

ϕ−1 = λ−1
∞∑

i=0

m+ 2

m+ 2 + i(m+ 1)

(
− t
λ

)i
.

Since it is not necessary for the proof of Theorem 2, we will prove Lemma 3
in Section 6.

Let us from now on assume that ϕ is this solution. Then the differential
equation for R spells

[R, ξ]− zqLER+ zq
LEϕ

ϕ
Rµ = 0. (7)

The following lemma implies that the matrix R̃Pm(z)R̃−1
Am+1

(zϕ) does
not have any poles in t and this concludes the proof of Theorem 2.

Lemma 4. For any solution R(z) of (7) of the form

R(z) =

∞∑

i=0

(Rijk)zi = 1 +O(z),

for Laurent series Rijk in t, actually all the Rijk have to be polynomials.

Proof. The matrices ξ and µ can be explicitly calculated

ξjk = t
m+ 1

m+ 2
δj,k+1(−t)δ0,j , µjk =

2j −m
2(m+ 2)

δj,k,

where all indices are understood modulo (m+ 1).
Assume that we have already constructed Ri−1 and its entries have no

negative powers in t. Looking at the zi-part of (7) gives expressions for
Rij(k+1)ξ(k+1)k − ξj(j−1)R

i
(j−1)k as power series with no poles in t. From
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here we see that if we can determine the Rij0 as power series with no poles,
then the other entries are given by

Rijk ≡ (−t)δk>jRi(j−k)0

modulo terms with no poles in t, determined from Ri−1. The exponent
δk>j is 1 for k > j and 0 otherwise.

From the zi+1-part of (7) we then get expressions with no poles in t
for

(m+ 1)t
dRij0

dt
+ jRij0,

thus determining all Rij0 but Ri00 up to a constant. Therefore all the Rijk
are polynomials in t.

Remark 5. The derivation in this section would have worked the same if
q was any other invertible power series in t.

6 Higher dimensions

We would like to show that for m > 1 there is no pair of function ϕ and
matrix power series R(z), both well-defined in the limit disc → 0, such
that

R̃Pm(z) = R(z)R̃Am+1(zϕ), (8)

where again R̃∗ = ΨR∗Ψ
−1. We will need to assume that that ϕ is well-

defined in the Airy limit. Then we can use the discussion from Section 5
to derive that ϕ is of the form

ϕ = λ+ c0λ
0 + c−1λ

−1 + · · · ,

where the ci are independent of λ and c−1 in the Airy limit becomes a
constant multiple of (t1)2. For the uniqueness of ϕ we needed Lemma 3.

Proof of Lemma 3. Recall that we have to show that P := R̃Am+1ξR̃
−1
Am+1

is not a polynomial in z. From the differential equation for R̃Am+1 we
obtain a differential equation for P .

[P, ξ] = z2 dP

dz
− z[P, µ]

By definition we also have the initial condition P |z=0 = ξ. Write P =
ξ+ zP1 + z2P2 + · · · . The homogeneity condition for R̃Am+1 implies that
the only nonzero entries of Pi are at the (i−1)-th diagonal, where by this
we mean the entries on j-th row, k-th column such that k − j ≡ i − 1
(mod m+ 1).

Assume we have shown that Pi 6= 0 has a nonzero entry on the (i−1)-
th diagonal row. Recalling the proof of Lemma 4 we see that essentially
the differences of two subsequent entries in the i-th diagonal of Pi+1 are
a multiple of an entry on the (i− 1)-th diagonal of Pi. Since the absolute
value of any entry of µ is less than 1

2
, all of these multiples are nonzero.

Therefore it is impossible for all entries on the i-th diagonal of Pi+1 to be
zero. The lemma follows by induction.
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To show that there is no suitable intermediate R-matrix R it will be
enough to consider the z1-term of (8). It says

r̃Pm = r + ϕr̃Am+1 ,

where r∗ stands for the z1-term of R∗. Since r̃Pm has no negative powers
in λ, the λ−1-terms on the right hand side have to cancel. However the
bottom-left coefficient of r̃Am+1 has a pole in the discriminant. Since
for m > 2 the coefficient c−1 cannot be a multiple of the discriminant
for degree reasons, in this case r has to have a pole in the discriminant.
Contradiction.

It remains to look at the case m = 2. Here it is similarly enough to
show that there is one coefficient in the R-matrix with a second order
pole in the discriminant in order to derive a contradiction. We look at
the coefficient r20 calculated from the oscillating integral of Section 3.1.
We need to calculate the z1-coefficient of the asymptotic expansion of

∑

Q

1√
2π∆

∞∫

−∞

exp

(
−x

2

2
− x3√−z Q

∆3/2
− x4

4
(−z) 1

∆2

)
dx,

where we sum over roots Q of the polynomial defining the singularity
and here ∆ = 3Q2 + 2t2. Expanding the Gaussian integral we find the
coefficient to be equal to

−
∑

Q

15

2

Q2

∆4
+
∑

Q

3

∆3
.

It is straightforward to check that the first summand equals

−15

2

−2(2t2)3 + 27(t1)2

(−4(2t2)3 − 27(t1)2)2
,

whereas the second term has only a first order pole in the discriminant.

A Givental’s localization calculation

We want to recall Givental’s localization calculation [4], which proves
that the CohFT from equivariant Pm can be obtained from the trivial
theory via a specific R-matrix action. We first recall localization in the
space of stable maps to Pm in Section A.1. Next, in Section A.2 we
group the localization contributions according to the dual graph of the
source curve. We collect identities following from the string and dilaton
equation in Section A.3 before applying them to finish the computation
in Section A.4.
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A.1 Localization in the space of stable maps

Let T = (C∗)m+1 act diagonally on Pm. The equivariant Chow ring of a
point and Pm are given by

A∗T (pt) ∼=Q[λ0, . . . , λm]

A∗T (Pm) ∼=Q[H,λ0, . . . , λm]/

m∏

i=0

(H − λi),

where H is a lift of the hyperplane class. Furthermore, let η be the
equivariant Poincaré pairing.

There are m+ 1 fixed points p0, . . . , pm for the T -action on Pm. The
characters of the action of T on the tangent space TpiP

m are given by
λi − λj for j 6= i. Hence the corresponding equivariant Euler class ei is
given by

ei =
∏

j 6=i
(λi − λj).

The equivariant class ei also serves as the inverse of the norms of the
equivariant (classical) idempotents

φi = e−1
i

∏

j 6=i
(H − λj).

The virtual localization formula [6] implies that the virtual fundamen-
tal class can be split into a sum

[Mg,n(Pm, d)]virT =
∑

X

ιX,∗
[X]virT

eT (Nvir
X,T )

of contributions of fixed loci X. Here Nvir
X,T denotes the virtual normal

bundle of X in Mg,n(Pm, d) and eT the equivariant Euler class. Because
of the denominator, the fixed point contributions are only defined after
localizing by the elements λ0, . . . , λm. By studying the C∗-action on de-
formations and obstructions of stable maps, eT (Nvir

X,T ) can be computed
explicitly.

The fixed loci can be labeled by certain decorated graphs. These
consist of

• a graph (V,E),

• an assignment ζ : V → {p0, . . . , pm} of fixed points,

• a genus assignment g : V → Z≥0,

• a degree assignment d : E → Z>0,

• an assignment p : {1, . . . n} → V of marked points,

such that the graph is connected and contains no self-edges, two adjacent
vertices are not assigned to the same fixed point and we have

g = h1(Γ) +
∑

v∈V
g(v), d =

∑

e∈E
d(e).

A vertex v ∈ V is called stable if 2g(v)− 2 + n(v) > 0, where n(v) is the
number of outgoing edges at v.
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The fixed locus corresponding to a graph is characterized by the con-
dition that stable vertices v ∈ V of the graph correspond to contracted
genus g(v) components of the domain curve, and that edges e ∈ E cor-
respond to multiple covers of degree d(e) of the torus fixed line between
two fixed points. Such a fixed locus is isomorphic to a product of moduli
spaces of curves ∏

v∈V
Mg(v),n(v)

up to a finite map.
For a fixed locus X corresponding to a given graph the Euler class

eT (Nvir
X,T ) is a product of factors corresponding to the geometry of the

graph

eT (Nvir
X,T ) =

∏

v, stable

e(E∗ ⊗ TPm,ζ(v))

eζ(v)

∏

nodes

eζ
−ψ1 − ψ2

∏

g(v)=0
n(v)=1

(−ψv)
∏

e

Contre. (9)

In the first product E∗ denotes the dual of the Hodge bundle, TPm,ζ(v) is
the tangent space of Pm at ζ(v), and all bundles and Euler classes should
be considered equivariantly. The second product is over nodes forced
onto the domain curve by the graph. They correspond to stable vertices
together with an outgoing edge, or vertices v of genus 0 with n(v) = 2.
With ψ1 and ψ2 we denote the (equivariant) cotangent line classes at the
two sides of the node. For example, the equivariant cotangent line class ψ
at a fixed point pi on a line mapped with degree d to a fixed line is more
explicitly given by

−ψ =
λj − λi

d
,

where pj is the other fixed point on the fixed line. The explicit expressions
for the terms in the second line of (9) can be found in [6], but will play
no role for us. It is only important that they only depend on local data.

A.2 General procedure

We set W to be A∗T (Pm) with all equivariant parameters localized. For
v1, . . . , vn ∈W the (full) CohFT Ωg,n from equivariant Pm is defined by

Ωpg,n(v1, . . . , vn)

=

∞∑

d,k=0

qd

k!
ε∗π∗

(
n∏

i=1

ev∗i (vi)
n+k∏

i=n+1

ev∗i (p) ∩ [Mg,n+k(Pm, d)]vir
)
, (10)

where p is a point on the formal Frobenius manifold, ε forgets the last k
markings and π forgets the map. We want to calculate the push-forward
via virtual localization. In the end we will arrive at the formula of the
R-matrix action as described in Section 2.3. In the following we will
systematically suppress the dependence on p in the notation.
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We start by remarking that for each localization graph for (10) there
exists a dual graph of Mg,n corresponding to the topological type of the
stabilization of a generic source curve of that locus. What gets contracted
under the stabilization maps are trees of rational curves. There are three
types of these unstable trees:

1. those which contain one of the n markings and are connected to a
stable component,

2. those which are connected to two stable components and contain
none of the n markings and

3. those which are connected to one stable component but contain none
of the n markings.

These give rise to series of localization contributions and we want to record
those, using the fact that they already occur in genus 0.

Let W ′ be an abstract free module over the same base ring as W with
a basis w0, . . . , wm labeled by the fixed points of the T -action on Pm. The
type 1 contributions are recorded by

R̃−1 =
∑

i

R̃−1
i wi ∈ Hom(W,W ′)[[z]],

the homomorphism valued power series such that

R̃−1
i (v) = η(eiφi, v) +

∞∑

d,k=0

qd

k!

∑

Γ∈G1
d,k,i

1

Aut(Γ)
ContrΓ(v)

where G1
d,k,i is the set of localization graphs for M0,2+k(Pm, d) such that

the first marking is at a valence 2 vertex at fixed point i and ContrΓ(v)
is the contribution for graph Γ for the integral

∫

M0,2+k(Pm,d)

ei
−z − ψ1

ev∗2(v)

2+k∏

l=3

ev∗l (p).

We define the integral in the case (d, k) = (0, 0) to be zero and will do
likewise for other integrals over non-existing moduli spaces.

The type 2 contributions are recorded by the bivector

Ṽ =
∑

i

Ṽ ijwi ⊗ wj ∈W ′⊗2[[z, w]]

which is defined by

V ij =

∞∑

d,k=0

qd

k!

∑

Γ∈G2
d,k,i,j

1

Aut(Γ)
ContrΓ,

where G2
d,k,i,j is the set of localization graphs for M0,2+k(Pm, d) such that

the first and second marking are at valence 2 vertices at fixed points i and
j, respectively, and ContrΓ is the contribution for graph Γ for the integral

∫

M0,2+k(Pm,d)

eiej
(−z − ψ1)(−w − ψ2)

2+k∏

l=3

ev∗l (p).
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Finally, the type 3 contribution is a vector

T̃ =
∑

i

T̃iwi ∈W ′[[z]]

which is defined by

T̃i = p+

∞∑

d,k=0

qd

k!

∑

Γ∈G3
d,k,i

1

Aut(Γ)
ContrΓ

where G3
d,k,i is the set of localization graphs for M0,1+k(Pm, d) such that

the first marking is at a valence 2 vertex at fixed point i and ContrΓ(v)
is the contribution for graph Γ for the integral

∫

M0,1+k(Pm,d)

ei
−z − ψ

1+k∏

l=2

ev∗l (p).

With these contributions we can write the CohFT already in a form
quite similar to the reconstruction formula. Let ωg,n be the n-form on W ′

which vanishes if wi and wj for i 6= j are inputs, which satisfies

ωg,n(wi, . . . , wi) =
e(E∗ ⊗ TPm,pi)

ei
= eg−1

i

∏

j 6=i
cλj−λi(E)

and which is for n = 0 defined similarly as in Example 1. We have

Ωpg,n(v1, . . . , vn) =
∑

Γ

1

Aut(Γ)
ξ∗

(∏

v

∞∑

k=0

1

k!
ε∗ωgv,nv+k(. . . )

)
, (11)

where we put

1. R̃−1(ψ)(vi) into the argument corresponding to marking i,

2. a half of Ṽ (ψ1, ψ2) into an argument corresponding to a node and

3. T̃ (ψ) into all additional arguments.

We will still need to apply the string and dilaton equation in order
to make T̃ (ψ) to be a multiple of ψ2, like the corresponding series in the
reconstruction, and then relate the series to the R-matrix.

A.3 String and Dilaton Equation

We want to use the string and dilaton equation to bring a series

∞∑

k=0

1

k!
ε∗

(
n∏

i=1

1

−xi − ψi

n+k∏

i=n+1

Q(ψi)

)
, (12)

where ε : Mg,n+k → Mg,n is the forgetful map and Q = Q0 + zQ1 +
z2Q2 + · · · is a formal series, into a canonical form.

By the string equation, (12) is annihilated by

L′ = L+

n∑

i=1

1

xi
,
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where L is the string operator

L =
∂

∂Q0
−Q1

∂

∂Q0
−Q2

∂

∂Q1
−Q3

∂

∂Q2
− · · · .

Moving along the string flow for some time −u, i.e. applying etL
′ |t=−u,

to (12) gives

∞∑

k=0

1

k!
ε∗

(
n∏

i=1

e
− u
xi

−xi − ψi

n+k∏

i=n+1

Q′(ψi)

)
,

for a new formal series Q′ = Q′0 + zQ′1 + z2Q′2 + · · · . In the case that

u =

∞∑

k=1

1

k!

∫

M0,2+k

2+k∏

i=3

Q(ψi),

which we will assume from now on, the new series Q′ will satisfy Q′0 = 0
since by the string equation Lu = 1 and therefore applying etL|t=−u to u
gives on the one hand zero and on the other hand the definition of u with
Q replaced by Q′, and for dimension reasons this is a nonzero multiple of
Q′0.

Next, by applying the dilaton equation we can remove the linear part
from the series Q′0

∞∑

k=0

1

k!
ε∗

(
n∏

i=1

1

−xi − ψi

n+k∏

i=n+1

Q(ψi)

)

=

∞∑

k=0

∆
2g−2+n+k

2

k!
ε∗

(
n∏

i=1

e
− u
xi

−xi − ψi

n+k∏

i=n+1

Q′′(ψi)

)
, (13)

where Q′′ = Q′ −Q′1z and

∆
1
2 = (1−Q′1)−1 =

∞∑

k=0

1

k!

∫

M0,3+k

3+k∏

i=4

Q(ψi).

We will also need identities in the degenerate cases (g, n) = (0, 2) and
(g, n) = (0, 1). In the first case, there is the identity

1

−z − w +

∞∑

k=1

1

k!

∫

M0,2+k

1

−z − ψ1

1

−w − ψ2

2+k∏

i=3

Q(ψi) =
e−u/z+−u/w

−z − w .

(14)
In order to see that (14) is true, we use that the left hand side is annihilated
by L+ 1

z
+ 1
w

in order to move from Q to Q′ via the string flow and notice
that there all of the integrals vanish for dimension reasons. Similarly,
there is the identity

1− Q(z)

z
− 1

z

∞∑

k=2

1

k!

∫

M0,1+k

1+k∏

i=2

Q(ψi)

= e−u/z
(

1− Q′(z)

z

)
= e−u/z

(
∆−

1
2 − Q′′(z)

z

)
, (15)
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which can be proven like the previous identity by using that the left hand
side is annihilated by L+ 1

z
.

We define the functions ui and (∆i/ei)
1
2 for i ∈ {0, . . . ,m} to be the

u and ∆
1
2 at the points Q = T̃i from the previous section.

A.4 Expressing localization series in terms of Fro-
benius structures

We apply (13) to (11) and obtain

Ωpg,n(v1, . . . , vn) =
∑

Γ

1

Aut(Γ)
ξ∗

(∏

v

∞∑

k=0

1

k!
ε∗ω

′
gv,nv+k(. . . )

)
, (16)

where we put

1. R−1(ψ)(vi) into the argument corresponding to marking i,

2. a half of V (ψ1, ψ2) into an argument corresponding to a node and

3. T (ψ) into all additional arguments.

Here R−1, V and T are defined exactly as R̃−1, Ṽ and T̃ but with the
replacement

ei
−x− ψ  

eie
−ui
x

−x− ψ
made at the factors we put at the ends of the trees. The form ω′g,n satisfies

ω′g,n(wi, . . . , wi) = ∆
2g−2+n

2
i e

−n
2

i

∏

j 6=i
cλj−λi(E).

We now want to compute R−1, V and T in terms of the homomorphism
valued series S−1(z) ∈ Hom(W,W ′)[[z]] with wi-component

S−1
i (z) = 〈 eiφi

−z − ψ ,−〉

:= η(eiφi,−) +

∞∑

d,k=0

qd

k!

∫

M0,2+k(Pm,d)

ev∗1(eiφi)

−z − ψ1
ev∗2(−)

2+k∏

j=3

ev∗j (p).

We start by computing S−1 via localization. Using that in genus zero
the Hodge bundle is trivial we find that at the vertex with the first marking
we need to compute integrals exactly as in (14), where the first summand
stands for the case that the vertex is unstable and the k-summand stands
for the case that the vertex is stable with k trees of type 3 and one tree
of type 1. Applying (14) we obtain

S−1
i (z) = e−

ui
z R−1

i (z).
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Using the short-hand notation

〈
v1

x1 − ψ
,

v2

x2 − ψ
,

v3

x3 − ψ

〉

:=

∞∑

d,k=0

qd

k!

∫

M0,3+k(Pm,d)

ev∗1 v1

x1 − ψ1

ev∗2 v2

x2 − ψ2

ev∗3 v3

x3 − ψ3

3+k∏

i=4

ev∗i (p)

for genus zero Gromov-Witten invariants and applying the string equation,
we can also write

S−1
i (z) = −1

z
〈 eiφi
−z − ψ ,1,−〉.

We have by the identity axiom and WDVV equation

〈 eiφi
−z − ψ ,

ejφj
−w − ψ ,1〉 = 〈 eiφi

−z − ψ ,
ejφj
−w − ψ , •〉〈•,1,1〉

= 〈 eiφi
−z − ψ ,1, •〉〈•,1,

ejφj
−w − ψ 〉,

where in the latter two expressions the • should be filled with η−1, so that

S−1
i (z)η−1S−1

j (w)t

−z − w

=
η(eiφi, ejφj)

−z − w +

∞∑

d,k=0

qd

k!

∫

M0,2+k(Pm,d)

ev∗1(eiφi)

−z − ψ1

ev∗2(ejφj)

−w − ψ2

2+k∏

l=3

ev∗l (p).

(17)

We compute the right hand side via localization. There are two cases in
the localization depending on whether the first and second marking are
at the same or a different vertex. In the first case we apply (14) at this
common vertex and obtain the total contribution

eiδije
−ui
z
−uj
w

−z − w ,

which includes the unstable summand. In the other case, we apply (14)
at the two vertices and obtain

e−
ui
z
−uj
w V ij(z, w).

So all together

V ij(z, w) =
R−1
i (z)η−1R−1

j (w)t − eiδij
−z − w .

Finally we express T in terms of R by computing

S−1
i (z)1 = ei − 1

z

∞∑

d,k=0

qd

k!

∫

M0,1+k(Pm,d)

ev∗1(eiφi)

−z − ψ1

1+k∏

j=2

ev∗j (p)
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via localization. Applying (15) at the first marking we find that

S−1
i (z)1 = e−

ui
z

(
∆
− 1

2
i e

1
2
i −

Ti(z)

z

)
.

So

T (z) = z

(∑

i

∆
− 1

2
i e

1
2
i wi −R−1(z)1

)
.

By (16) the underlying TQFT of Ωpg,0 is given by

∑

i

∆g−1
i .

This implies that the ∆i need to be the inverses of the norms of the
idempotents for the quantum product of equivariant Pm (because these are
pairwise different). Since T̃ vanishes at (p, q) = 0, ∆i is e−1

i at (p, q)→ 0.
Therefore we can identify W ′ with W by mapping wi to

√
∆i/ei times the

idempotent element which coincides with φi at (p, q) = 0. The previous
results then say exactly that Ωp is obtained from the CohFT ω′ by the
action of the R-matrix R. In turn, Example 4 implies that ω′ is obtained
from the TQFT by the action of an R-matrix which is diagonal in the
basis of idempotents and has entries

exp



∞∑

i=1

B2i

2i(2i− 1)

∑

j 6=i

(
z

λj − λi

)2i−1

 .

We still need to check thatR satisfies the quantum differential equation
and has the correct limit (4) as q → 0. By considering (17) as w + z → 0
we see that S−1(z) satisfies the symplectic condition, i.e. its inverse S(z)
is the adjoint with respect to η of S−1(−z). More explicitly the evaluation
of S(z) at the ith normalized idempotent is the vector

〈√
eiφi

z − ψ , η
−1

〉
.

By the genus 0 topological recursion relations for any flat vector field X

z

〈
X,

√
eiφi

z − ψ , η
−1

〉
= 〈X, η−1, •〉

〈
•,
√
eiφi

z − ψ

〉
,

where again η−1 should be inserted at the •. Therefore S satisfies the
quantum differential equation

zXS(z) = X ? S(z),

where on the left hand side the action of vector fields and the right hand
side quantum multiplication is used.

At q = 0, we can check that R becomes the identity matrix and there-
fore the R-matrix of Ωp becomes the R-matrix of the CohFT ω′, which
has the correct limit (4).
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Abstract

For generically semisimple cohomological field theories pole cancel-
lation in the Givental-Teleman classification implies relations between
classes in the tautological ring of the moduli space of curves. For the
theory of the A2-singularity these are known to be equivalent to Pixton’s
generalized Faber-Zagier relations. We show that the relations from any
other semisimple cohomological field theory can be written in terms of
Pixton’s relations. This gives large evidence for the conjecture that Pix-
ton’s relations are all relations between tautological classes.

As part of the proof, we study the structure of an N -dimensional
generically semisimple Frobenius manifold near smooth points of the non-
semisimple locus, giving a local description modeled on the Frobenius
manifold corresponding to the A2×AN−2

1 -singularity, and give criteria for
extending generically semi-simple Frobenius manifolds to cohomological
field theories.

1 Introduction

The tautological rings RH∗(Mg,n) are certain subrings of the cohomol-
ogy rings H∗(Mg,n) of the Deligne-Mumford moduli space Mg,n of stable
curves of arithmetic genus g with n markings. Starting from the 80s with
Mumford’s seminal article [13], they have been studied extensively. How-
ever, their structure is still not completely understood: While there is an
explicit set of generators parametrized by decorated graphs, the set of re-
lations between the generators is not known. On the other hand, Pixton’s
set [16] of generalized Faber-Zagier relations gives a well-tested conjec-
tural description for this set of relations. Another conjectural description
had been given by Faber’s Gorenstein conjecture but it is now known to
be false in general [15].

In [14] the relations of Pixton have been shown to arise in the com-
putation of Witten’s 3-spin class via the Givental-Teleman classification
of semisimple cohomological field theories (CohFTs). The formula that
Pandharipande-Pixton-Zvonkine obtain for Witten’s 3-spin class has the
form of a limit φ→ 0 of a Laurent series in a variable φ whose coefficients
are tautological classes. The existence of the limit implies cancellation
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between tautological classes such that no poles in φ are left in the end.
These relations between tautological classes, after adding relations directly
following from them, give exactly the relations of Pixton.

As noted in [14], the limit φ→ 0 can be viewed as approaching a non-
semisimple point on the Frobenius manifold corresponding to Witten’s
3-spin class. In particular, the same procedure can be applied to get
relations from other generically semisimple CohFTs but it is not clear
how the relations from different CohFTs relate to each other. In [10] first
comparison results have been proven: The relations from the equivariant
Gromov-Witten theory of P1 are equivalent to the relations from the 3-
spin theory and in general the relations from equivariant PN−1 imply the
(N + 1)-spin relations.

The main result of this article, Theorem 3.3.6, is that, for any CohFT
to which this procedure applies, we obtain the same set of relations. Thus
the relations of Pixton are the universal relations necessary in order for
the Givental-Teleman classification to admit non-semisimple limits. The-
orem 3.3.6 can also be used to relate more geometric relations to Pixton’s
relations (see e.g. [2]).

Before attacking Theorem 3.3.6, we prove a structure result, Theo-
rem 2.3.10, about Frobenius manifolds near a smooth point of the dis-
criminant locus of non-semisimple points. Essentially we show that there
is a nice set of local coordinates and local vector fields, which is modeled
on the simplest example of the 3-spin theory (extended to the correct
dimension using trivial theories).

Using Theorem 2.3.10 we give a criterion (Theorem 3.4.1) when a
generically semisimple Frobenius manifold can locally be extended to a
CohFT. Its proof first locally identifies points and tangent vectors of the
given Frobenius manifold and of the 3-spin Frobenius manifold. Under
this identification we show that an extension is obtained from the 3-
spin CohFT by the action of an R-matrix and a shift, both of which
are holomorphic along the discriminant. Theorem 3.3.6 essentially follows
by noticing that for formal reasons these (invertible) operations preserve
the corresponding tautological relations.

In this paper we work over C and with the tautological ring in coho-
mology. It is actually more natural to define the tautological ring in Chow
and everything in this paper works equally well in Chow if the Givental-
Teleman reconstruction is proven in Chow for the relevant CohFTs.

Plan of the paper

In Section 2 we first recall basic properties of Frobenius manifolds, define
the discriminant and then prove Theorem 2.3.10 about the local structure
of semisimple Frobenius manifolds near a smooth point on the discrimi-
nant. In Section 3 we start by recalling the definition of cohomological
field theories and the statement of the Givental-Teleman classification.
After that, in Section 3.3, we discuss the tautological ring and the re-
lations resulting from the classification. In Section 3.4 we prove Theo-
rem 3.4.1 about the extension of locally semi-simple Frobenius manifolds.
We discuss in Section 3.5 how its proof implies Theorem 3.3.6 on the com-
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parison of tautological relations. In Section 3.6, we shortly consider the
problem of finding a global extension theorem similar to Theorem 3.4.1.
Afterwards, in Section 3.7 we study two examples, which illustrate ob-
structions to directly generalizing our results. In the final Section 3.8 we
show that certain other relations obtained from the equivariant Gromov-
Witten theory of toric targets can also be expressed in terms of Pixton’s
relations.
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2 Frobenius manifolds

2.1 Definition and basic properties

Frobenius manifolds have been introduced by Dubrovin [3]. They natu-
rally arise when studying genus zero Gromov-Witten theory. Let us begin
by recalling their basic properties in the following slightly redundant def-
inition.

Definition 2.1.1. AnN -dimensional (complex, even) Frobenius manifold
is a 4-tuple (M,η,A,1), consisting of

• M , a complex, connected manifold of dimension N ,

• a nonsingular metric η ∈ Γ(Sym2(T ∗M)),

• a tensor A ∈ Γ(Sym3(T ∗M)),

• a vector field 1 ∈ Γ(TM),

satisfying the following properties:

• A commutative, associative product ? on TM , with unit 1, is defined
by setting for local vector fields X and Y that

η(X ? Y,Z) = A(X,Y, Z)

for any local vector field Z.
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• The metric η is flat and 1 is an η-flat vector field.

• Locally around each point there exist flat coordinates tα such that
the metric and the unit vector field are constant when written in the
basis of the corresponding local vector fields ∂

∂tα
.

• Locally on M there exists a holomorphic function Φ called potential
such that

A

(
∂

∂tα
,
∂

∂tβ
,
∂

∂tγ

)
=

∂3Φ

∂tα∂tβ∂tγ
.

2.2 Discriminant and semisimplicity

Let U be a chart of an N -dimensional Frobenius manifold with a basis
e1, . . . , eN of flat vector fields. There is a trace map Tr taking vector fields
on U to holomorphic functions on U defined by setting for any p ∈M and
vector field X that Tr(X)(p) is the trace of the linear map on TpU given
by ?-multiplication by X|p. We define a discriminant function disc of U
by

disc = det(Tr(eiej)) ∈ OU .
The function disc is not independent of the choice of flat vector fields:
If A changes from one flat basis to another, the discriminant changes by
the constant det(A)2. However, this means that at least the discriminant
locus {disc = 0} is well-defined. Over any point p of U there exists a
nilpotent element in TpU if and only if p lies in the discriminant locus.

We say that a Frobenius manifold M is (generically) semisimple if the
discriminant is not identically zero. We call a point in M semisimple if it
does not lie in the discriminant locus.

If M is semisimple, near any semisimple point we can choose a basis
∂
∂ui

of orthogonal idempotents and we use the notation ∆−1
i for their

norms. Then ∆
1
2
i

∂
∂ui

define normalized idempotents. As the notation

suggests, the vector fields ∂
∂ui

commute and we can integrate them locally
near semisimple points to give the canonical coordinates ui.

Lemma 2.2.1. For an N-dimensional semisimple Frobenius manifold M ,
locally around any (possibly not semisimple) point, the orthogonal idem-
potents extend to meromorphic sections of π∗TM , where π : M̃ →M is a
finite holomorphic map with ramification at most along the discriminant.
Furthermore, the meromorphic sections can have poles at most along the
discriminant.

Proof. Take a local basis eµ of flat vector fields and consider their minimal
polynomials fµ, which have holomorphic coefficients. On a finite ramified
cover M̃ we can single out holomorphic roots ζµ,i for each minimal poly-
nomial. If none of the differences ζµ,i − ζµ,j vanishes identically, we can
define idempotent meromorphic vector fields on M̃ by the Lagrange in-
terpolation polynomials ∏

j 6=i

eµ − ζµ.j
ζµ,i − ζµ,j

. (1)

On the other hand, if the difference ζµ,i− ζµ,j vanishes identically, the
numerator P =

∏
j 6=i(eµ− ζµ.j) of the Lagrange interpolation polynomial
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still makes sense and is on the one hand non-zero because otherwise adding
up the Galois conjugates of P would give an equation for eµ of degree lower
than the minimal polynomial, but on the other hand its square vanishes.
So because of semisimplicity of M this case is actually impossible.

Some idempotent vector fields of (1) might coincide or not be orthogo-
nal to each other, but we know because the eµ gave a basis at each tangent
space that the vector fields from (1) span the tangent space of a generic
point. By removing duplicate idempotents and by suitably taking differ-
ences we can extract a basis of orthogonal idempotents for the tangent
space of a generic point.

Given a semisimple point p, we can choose an element of the tangent
space whose minimal polynomial has order N , i.e. a linear combination of
orthogonal idempotents with pairwise distinct coefficients. Therefore also
the minimal polynomial of the corresponding flat vector field has order
N . Its discriminant does not vanish at p and therefore its roots are not
ramified along p. By construction, the corresponding idempotents recover
the idempotents at TpM and are in particular holomorphic in p.

Example 2.2.2. The Givental-Saito theory of the A2 singularity, which
appears in the study of Witten’s 3-spin class (it is mirror symmetric), is
about a two-dimensional Frobenius manifold and motivates Theorem 2.3.10.
As a manifold it is isomorphic to C2 with coordinates t0, t1 and its points
correspond to versal transformations

x3

3
− t1x+ t0

of the A2-singularity x3

3
. In the basis ∂

∂t0
, ∂
∂t1

the metric η is given by
the matrix (

0 1
1 0

)

and the potential is

Φ(t0, t1) =
1

2
t20t1 +

1

24
t41.

Therefore ∂
∂t0

is the unit and the only interesting quantum product is

∂

∂t1
?
∂

∂t1
= t1

∂

∂t0
.

Hence on a two-fold cover of C2 ramified along the discriminant locus
{t1 = 0} we can define the meromorphic idempotents

ε± = ± 1

2
√
t1

∂

∂t1
+

1

2

∂

∂t0
.

A choice of corresponding canonical coordinates is given by

u± = t0 ± 2

3
t
3
2
1 .

Notice that we can get back to the flat vector fields by

∂

∂t0
= ε+ + ε−

5



and

∂

∂t1
=

(
3

4
(u+ − u−)

) 1
3

(ε+ − ε−).

2.3 Local structure near the discriminant

We now want to analyze in more detail the structure of a semisimple
Frobenius manifold near the discriminant locus. The results are summa-
rized in Theorem 2.3.10.

For this we start with a neighborhood M of a smooth point p of the
discriminant locus D of an N -dimensional Frobenius manifold. We might
need to shrink this neighborhood a finite number of times but by abuse
of notation we will keep the name M .

Because of smoothness of p ∈ D, on a smaller M there exists a positive
integer k and flat coordinates t1, . . . , tN such that there is a kth root
tD = k

√
disc that can be expanded near p as

tD = t1 +O((t1, t2, . . . , tN )2).

We will use tD, t2, . . . , tN as alternative local coordinates and study the
order in tD, i.e. order of vanishing along D, of various data of M . By
shrinking M further we can assume that D is the vanishing locus of tD.

By Lemma 2.2.1, in order to define idempotents we will also need to
allow for vector fields whose coefficients are convergent Puisseux series in
tD. So in the following the order in tD can also be fractional.

Lemma 2.3.1. No nonzero idempotent can have positive order in tD.

Proof. Let X be an idempotent with positive order m. Then X = X2

would have order at least 2m. However for positive m we have m <
2m.

Lemma 2.3.2. There is a choice of the flat coordinates t2, . . . , tN such
that for every i, when we write

∂

∂ui
= c1

∂

∂tD
+

N∑

µ=2

cµ
∂

∂tµ
,

the function c1 has the minimal tD-order −mi out of {c1, . . . , cN}.

Proof. Since under the coordinate change t′µ = tµ + αµtD for αµ ∈ C,
µ ∈ {2, . . . , N} we have

∂

∂t1
=

∂

∂t′1
+

N∑

µ=2

αµ
∂

∂t′µ
,

∂

∂tµ
=

∂

∂t′µ
,

there is a dense set of suitable coordinate transforms for any i.

We will from now on assume that we have made such a choice of flat
coordinates.

Lemma 2.3.3. At least one of the norms ∆−1
i of the orthogonal idempo-

tents has negative order in tD.
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Proof. Assume on the contrary that the norms of all idempotents extend
to D. Pick an idempotent ∂

∂ui
with most negative order −mi. Then the

element

X = tmiD
∂

∂ui
extends to D but by assumption η(X,X) vanishes there. Since the metric
is nonsingular we can find a vector field Y defined in a neighborhood of a
point on D, such that η(X,Y ) has order zero along D. Writing Y as

Y =
∑

j

cj
∂

∂uj
,

we see that tmiD ci has also order zero.
Therefore there is an m > 0 such that Y ′ := tmDY can be written as

Y ′ =
∑

j

c′j
∂

∂uj
,

where all c′j have non-negative order and at least one c′j has order zero in
tD. On the other hand, we know that Y ′ vanishes on D.

The set of all Y ′ satisfying these conditions is closed under taking
powers and taking linear combinations which do not make all order zero
c′j vanish. Using these operations we can make, up to reordering, the
idempotents, c′1, . . . , c

′
k for k ≤ N to be equal to 1 up to higher order

terms in tD, and also make all other c′j vanish in D. Furthermore, we can
assume that c′1 = 1.

Now for large l either

Y ′l −
k∑

j=1

∂

∂uj

vanishes along D or we can replace Y ′ by Y ′2l − Y ′l times a suitable
(negative) power of tD, thereby making k smaller. For k = 1 always the
first case occurs.

So using induction we find that there is an idempotent element which
vanishes along D. This is in contradiction to Lemma 2.3.1.

Lemma 2.3.4. The order −m of c1 as in Lemma 2.3.2 agrees for all
idempotents with negative order. The order −m′ of the norms ∆−1

i of
these idempotents also agrees and is negative.

Proof. For idempotents ∂
∂ui

and ∂
∂uj

with negative order, by Lemma 2.3.2

the part of lowest order in tD of the ∂
∂tD

-component of the commutator

[
∂

∂ui
,
∂

∂uj

]
= 0

can be calculated from the lowest order parts of the ∂
∂tD

-components of
∂
∂ui

and ∂
∂uj

, and these will not agree if they have different orders in tD.

For the second part we compare the order of both sides of the identity

∂∆−1
j

∂ui
=
∂∆−1

i

∂uj
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from [3, Lecture 3]. If ∆j has positive order m′, the left hand side has
order −m′ −m − 1. Therefore in this case ∆i also needs to have order
m′. By Lemma 2.3.3 we are done.

Lemma 2.3.5. The number of idempotents with negative order is equal
to 2.

Proof. To exclude the possibility that the number of idempotents with
negative order is at least 3 we consider the Darboux-Egoroff equations [3,
Lecture 3]1

∂γij
∂uk

= γikγkj (2)

for i, j, k corresponding to a triple of such idempotents. Here the γij are
the rotation coefficients

γij =
√

∆j
∂

∂uj
∆
−1/2
i .

The order on both sides of (2) is −2m−2. Let ci, cj , ck and di, dj , dk be the
lowest order coefficients in tD of the ∂

∂tD
-component of the idempotents

and their norms, respectively. So the lowest order terms of γij and (2) are

−m
′

2
d
−1/2
j cjd

1/2
i

and

−m
′

2
(−m− 1)ckd

−1/2
j cjd

1/2
i =

m′2

4
d
−1/2
k ckd

1/2
i d

−1/2
j cjd

1/2
k ,

respectively. So we need to have

m′2

4
− m′m

2
− m′

2
= 0,

which does not hold since by Lemma 2.3.3 m′ > 0 and we must have
m′ ≤ m.

Because in general the sum of all idempotents is the identity, we con-
clude that there are exactly two idempotents with negative order.

We will from now on assume that ∂
∂u1

and ∂
∂u2

are these two idempo-
tents.

Lemma 2.3.6. The vector fields

tmD

(
∂

∂u1
− ∂

∂u2

)
,
∂

∂u1
+

∂

∂u2
,

∂

∂u≥3
(3)

give a basis of the tangent space at every point of M .

1In [3] always the assumption of the existence of an Euler vector field is made. We here
only use Equation 3.70a, which holds also without this assumption.
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Proof. All of the vector fields extend to D and the first of them does not
converge to the second because that would imply that the second vector
field is both idempotent and nilpotent, i.e. zero. They therefore give a
basis of the tangent space at generic points in D. Since they also give a
basis for any tangent space outside D, they give a basis for the tangent
space at every point of M .

Lemma 2.3.7. The order m′ of ∆1 and ∆2 is equal to m.

Proof. The norm of the first vector field of (3) vanishes on D. This
together with the fact that the metric is nonsingular implies that

tmD(∆−1
1 −∆−1

2 )

must have order zero in tD. Therefore ∆1 and ∆2 must have order m.

Lemma 2.3.8. After possibly shrinking M there exists a flat vector field
X such that the vector fields 1, X, . . . ,XN−1 span the tangent space at
every point of M .

Proof. We write any X in the basis (3). We have found a suitable X
when in a neighborhood of p the first coefficient is not zero and the other
coefficients are pairwise different and nonzero. However if these conditions
were false for any flat X, flat vector fields would only generate a proper
linear subspace at the tangent space of p.

Let X be as in Lemma 2.3.8. There is an equation

N∏

i=1

(X − ζi) = 0

and at least one of the differences ζi − ζj has positive order in tD. The
idempotents are then given by

∂

∂ui
=
∏

j 6=i

X − ζj
ζi − ζj

(4)

Because 1, X, . . . ,XN−1 span the tangent space at a generic point of D,
the products

∏
j 6=i(X− ζj) all have order 0 and because of (4) all roots of

the characteristic polynomial are distinct along D apart from ζ1 and ζ2.
We also know that when restricted to D all roots of the characteristic

polynomial are distinct apart from ζ1 and ζ2. Since the coefficients of the
characteristic polynomial are holomorphic, we find that ζ≥3 are holomor-
phic, as well as ζ1 + ζ2 and ζ1ζ2. Therefore 2m is a positive integer.

The vector fields ∂
∂u1

+ ∂
∂u2

, ∂
∂u1
− ∂

∂u2
and ∂

∂u≥3
all commute and

all of them but ∂
∂u1
− ∂

∂u2
are holomorphic. It follows that by correctly

choosing integration constants we can have that u1−u2 has order (m+1)
in tD. Furthermore by Lemma 2.3.6, t−m−1

D (u1 − u2) does not vanish on
any point of D. We conclude that we can choose a root (u1 − u2)1/(m+1)

that has order one in tD and is holomorphic in p. We thus can work with
(u1 − u2)1/(m+1) instead of tD.
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Lemma 2.3.9. If for all flat vector fields X a genus one potential dG(X)
of the Frobenius manifold extends to the discriminant, the order −m has
to be equal to − 1

2
.

Proof. The general formula (see [5]) for a genus one potential G is given
by

dG =
1

48

∑

i

d log(∆i) +
1

2

∑

i

riidui, (5)

where the functions rii
2, determined up to an integration constant, satisfy

drii =
1

4

∑

j

∂ log(∆j)

∂ui

∂ log(∆i)

∂uj
(duj − dui).

Let us consider the lowest order term in tD of

∂G

∂u1
− ∂G

∂u2
=

1

24

∑

i

∂ log(∆i)

∂(u1 − u2)
+

1

2
(r11 − r22).

For this we will only need to care about the i = 1 and i = 2 terms of the
sum, whose lowest order terms are both equal to

m

m+ 1

1

u1 − u2
.

For the d(u1 − u2)-component of drii for i ∈ {1, 2}, we get the lowest
order term from the j = 3− i summand, which is

(−1)i+1 m2

4(m+ 1)2

1

(u1 − u2)2
.

In total the lowest order terms of ∂G
∂u1
− ∂G

∂u2
are

2m

24(m+ 1)

1

u1 − u2
− m2

4(m+ 1)2

1

u1 − u2
.

This term only vanishes when m = 1
2
.

Therefore if m 6= 1
2
, at p the genus one potential dG with ∂

∂tD
inserted

is not holomorphic along D.

In total, we have shown the following result.

Theorem 2.3.10. Let M be a semisimple Frobenius manifold. In a neigh-
borhood U of a smooth point of the discriminant of M , there exists a
positive half-integer m such that

• all but two idempotents ∂
∂u1

, ∂
∂u2

extend holomorphically to the dis-
criminant in U ,

• for a suitable choice of integration constants, there is a holomorphic
root (u1 − u2)1/(m+1), and its vanishing locus describes the discrim-
inant in U ,

2They correspond to the diagonal entries of the linear part of the R-matrix.
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• The vector fields

(u1 − u2)m/(m+1)

(
∂

∂u1
− ∂

∂u2

)
,
∂

∂u1
+

∂

∂u2
,

∂

∂u≥3

extend holomorphically to the discriminant and span the tangent
space at every point of U . The first of these vector fields spans the
space of nilpotent tangent vectors at p.

Furthermore, if in addition for any flat vector field X, for a genus one
potential G, the function dG(X) extends to the discriminant, the half-
integer m has to be equal to 1

2
.

3 Cohomological Field Theories

3.1 Definitions

Let Mg,n be the moduli space of stable, connected, at most nodal al-
gebraic curves of arithmetic genus g with n markings. It is a smooth
DM-stack of dimension 3g − 3 + n. Let Mg,n be the open substack of
smooth pointed curves. Forgetting a marking and gluing along markings
induce the tautological maps

Mg,n+1 →Mg,n,

Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 ,

Mg,n+2 →Mg+1,n.

Cohomological field theories were first introduced by Kontsevich and
Manin in [11] to formalize the structure of classes from Gromov-Witten
theory. Let V be an N -dimensional C-vector space and η a nonsingular
bilinear form on V .

Definition 3.1.1. A cohomological field theory (CohFT) Ω on (V, η) is
a system

Ωg,n ∈ H∗(Mg,n)⊗ (V ∗)⊗n

of multilinear forms with values in the cohomology ring of Mg,n satisfying
the following properties:

Symmetry Ωg,n is symmetric in its n arguments

Gluing The pull-back of Ωg,n via the gluing map

Mg1,n1+1 ×Mg2,n2+1 →Mg,n

is given by the direct product of Ωg1,n2+1 and Ωg2,n2+1 with the
bivector η−1 inserted at the two points glued together. Similarly for
the gluing map Mg−1,n+2 →Mg,n the pull-back of Ωg,n is given by
Ωg−1,n+2 with η−1 inserted at the two points glued together.

Unit There is a special element 1 ∈ V called the unit such that

Ωg,n+1(v1, . . . , vn,1)

is the pull-back of Ωg,n(v1, . . . , vn) under the forgetful map and

Ω0,3(v, w,1) = η(v, w).
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Definition 3.1.2. A CohFT whose classes are only multiples of the fun-
damental class is called a topological field theory (TQFT).

The definition of CohFTs can be also generalized to families of CohFTs
over a ground ring. We will use the following non-standard definition.

Definition 3.1.3. Let e1, . . . , eN be a basis of V . A convergent CohFT
Ω on V is a CohFT defined over the ring of holomorphic functions of an
open neighborhood U of 0 ∈ V such that for all g ≥ 0, all α1, . . . , αn ∈ V
and all t = t1e1 + · · ·+ tNeN we have

Ωg,n|t(α1, . . . , αn) =

∞∑

k=0

1

k!
π∗Ωg,n+k|0(α1, . . . , αn, t, . . . , t). (6)

We can define from any usual CohFT a convergent CohFT by using
(6), under the assumption that the sum converges in a neighborhood of 0.

Definition 3.1.4. The underlying Frobenius manifold of a convergent
CohFT Ω is as a manifold the neighborhood U of 0 ∈ V . At every point
of U the tangent space is identified with V by sending the vector field
∂
∂tµ

at every point to eµ. With this identification η defines the metric, 1

defines the unit vector field and Ω0,3 defines the symmetric tensor A.

Remark 3.1.5. Restricting to the origin, we see that every CohFT deter-
mines a Frobenius algebra. This operation restricts to a bijection between
TQFTs and Frobenius algebras of dimension N .

Using the underlying Frobenius manifold, for any convergent CohFT
we can define the quantum product on V (depending on a point in U),
the discriminant function, semisimplicity, semisimple points and the dis-
criminant locus.

Example 3.1.6. Given an N -dimensional (convergent) CohFT Ω and
some c ∈ C∗, we can define an (N + 1)-dimensional (convergent) CohFT
Ω′: If V is the underlying vector space of Ω, then V ⊕ 〈v〉 will be the
underlying vector space for Ω′. The nonsingular bilinear form η′ on V ⊕C
is defined via η′(v, v) = c, η′(α, v) = 0 and η′(α, β) = η(α, β), where
α, β ∈ V and η is the nonsingular bilinear form of V . The CohFT Ω′ is
then defined by multilinearity from setting

Ω′g,n(α1, . . . , αn) = Ωg,n(α1, . . . , αn),

if all αi lie in V , imposing the condition that Ω′ vanishes if one argument
is a multiple of v and another argument lies in V , and setting

Ω′g,n(v, . . . , v) = c1−g.

Finding the right definition in the remaining case n = 0 and checking the
axioms of a CohFT is left as an exercise to the reader.

Notice that v will be an idempotent element for the quantum product
and that this operation therefore preserves semisimplicity.
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3.2 Reconstruction

The (upper half of the) symplectic loop group corresponding to a vector
space V with nonsingular bilinear form η is the group of endomorphism
valued power series V [[z]] such that the symplectic condition R(z)Rt(−z) =
1 holds. Here Rt is the adjoint of R with respect to η. There is an action
of this group on the space of all CohFTs based on a fixed semisimple
Frobenius algebra structure of V . The action is named after Givental
because he has introduced it on the level of arbitrary genus Gromov-
Witten potentials.

Given a CohFT Ωg,n and such an endomorphism R, the new CohFT
RΩg,n takes the form of a sum over dual graphs Γ

RΩg,n(v1, . . . , vn) =
∑

Γ

1

Aut(Γ)
ξ∗

(∏

v

∞∑

k=0

1

k!
π∗Ωgv,nv+k(. . . )

)
, (7)

where ξ :
∏
vMgv,nv → Mg,n is the gluing map of curves of topological

type Γ from their irreducible components, π : Mgv,nv+k →Mgv,nv forgets
the last k markings and we still need to specify what is put into the
arguments of

∏
v Ωgv,nv+kv . Instead of only allowing vectors in V to be

put into Ωg,n we will allow for elements of V [[ψ1, . . . , ψn]] where ψi acts
on the cohomology of the moduli space by multiplication with the ith
cotangent line class.

• Into each argument corresponding to a marking of the curve, put
R−1(ψ) applied to the corresponding vector.

• Into each pair of arguments corresponding to an edge put the bivec-
tor

R−1(ψ1)η−1R−1(ψ2)t − η−1

−ψ1 − ψ2
∈ V ⊗2[[ψ1, ψ2]],

where one has to substitute the ψ-classes at each side of the normal-
ization of the node for ψ1 and ψ2. By the symplectic condition this
is well-defined.

• At each of the additional arguments for each vertex put

T (ψ) := ψ(Id−R−1(ψ))1,

where ψ is the cotangent line class corresponding to that vertex.
Since T (z) = O(z2) the above k-sum is finite.

The following reconstruction result (on the level of potentials) has been
first proposed by Givental [6].

Theorem 3.2.1 ([17]). The R-matrix action is free and transitive on the
space of semisimple CohFTs based on a given Frobenius algebra.

Furthermore, given a convergent semisimple CohFT Ω, locally around
a semisimple point, the element R of the symplectic loop group, taking the
TQFT corresponding to the Frobenius algebra to Ω, satisfies the following
differential equation of one-forms when written in a basis of normalized
idempotents

[R(z), du] + zΨ−1d(ΨR(z)) = 0. (8)
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Here u is the diagonal matrix filled with the canonical coordinates ui cor-
responding to the idempotents and Ψ is the basis change from the basis of
normalized idempotents to a flat basis.

Remark 3.2.2. The differential equation (8) makes sense for any Frobenius
manifold. In general it defines R only up to right multiplication by a
diagonal matrix whose entries are of the form exp(a1z+a3z

3 + · · · ), where
the ai are constants on the Frobenius manifold [7]. If the further condition
of homogeneity with respect to an Euler vector field is imposed on R, there
is a unique solution.

Remark 3.2.3. Teleman’s proof relies heavily on topological results (Mum-
ford’s conjecture/Madsen-Weiss theorem) and it is therefore not known if
the same classification result also holds in general when we work in Chow
instead of cohomology. It is still known that the statement is also in some
cases such as for the equivariant Gromov-Witten theory of a toric variety.

Remark 3.2.4. Formula (5) for a genus one potential

dG(X) =

∫

M1,1

Ω1,1(X)

is a special case of the reconstruction.

Let us make the local structure of the reconstruction formula a bit
more concrete for later use. We can decompose any endomorphism F of
V into a collection of linear forms

F =
∑

i

F iε̃i,

where ε̃i is the ith normalized idempotent element and we will use the
formula

ωg,n(ε̃a1 , . . . , ε̃an) =





∑
i ∆g−1

i , if n = 0,

∆
2g−2+n

2
a1 , if a1 = · · · = an,

0, else,

where the ∆i are the inverses of the norms of the idempotents. Then we
can rewrite (7) to

RΩg,n(v1, . . . , vn) =
∑

Γ,c

1

Aut(Γ, c)
ξ∗

(∏

v

Cv,c(v)(. . . )

)
, (9)

where c is a coloring of the vertices of Γ by a color in the set {1, . . . , N}
and the local contribution Cv,i at a vertex v of genus g, with n markings
and of color i is an n-form taking power series in z as inputs and is given
by

Cv,i(α1, . . . , αn)

=

∞∑

k=0

∆
2g−2+n+k

2
i

k!
π∗

(
m∏

j=1

αj(ψj)

n+k∏

j=n+1

ψj(Id
i−(R−1(ψj))

i)1Ω

)
.

The still missing arguments in (9), which correspond to preimages of the
marked points and nodes in the normalization, are to be filled with the
coordinates corresponding to the coloring of the vectors and bivectors also
used in (7).
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3.3 Relations in the tautological ring

The tautological subrings R∗(Mg,n) can be compactly defined [4] as the
smallest system of subrings R∗(Mg,n) ⊆ H∗(Mg,n) stable under push-
forward under the tautological maps as described in Section 3.1. Each
tautological ring is finitely generated [8] and a ring of generators has
been formalized into the strata algebra Sg,n [16]. As the name suggests,
the strata algebra is generated by strata of Mg,n (corresponding to dual
graphs) decorated with Morita-Mumford-Miller κ-classes and ψ-classes.
Pushforwards and pullbacks along the gluing and forgetful morphisms can
be lifted to homomorphisms of the corresponding strata algebras satisfying
the push-pull formula, . . . . Relations in the tautological ring are elements
of the kernel of the natural projection Sg,n → R∗(Mg,n).

Consider a semisimple, N -dimensional convergent CohFT Ω defined
in a neighborhood U of 0 ∈ V . Let D ⊂ U be the discriminant locus. By
the reconstruction formula described in Section 3.2 for each point outside
D in U we can find an R-matrix such that Ω is given by applying the
action of R to the underlying TQFT.

We obtain relations in the tautological ring by studying the behavior
along D. On the one hand the reconstruction gives functions that might
have singularities along the discriminant locus.3 On the other hand we
know that we get back the original CohFT by projecting from the strata
algebra to the tautological ring. Therefore we obtain vector spaces of
relations with values in OU\D/OU .4 By choosing a basis of OU\D/OU we
obtain a vector space of relations.

Definition 3.3.1. The vector space of tautological relations associated
to the convergent CohFT Ω is defined as the smallest system of ideals
of Sg,n which is stable under push-forwards via the gluing and forgetful
morphisms and contains the relations from cancellations of singularities
in the reconstruction of Ω, that we have just defined.

Example 3.3.2. For the 2-dimensional, (convergent) CohFT correspond-
ing to Witten’s 3-spin class, in [14] it is proven that the ideal of relations
coincides with the relations of Pixton [16], which are conjectured [16] to
be all relations between tautological classes.

Example 3.3.3. In [10] it is shown that the ideal of relations of the
Gromov-Witten theory of equivariant projective space PN−1 contains the
relations for Witten’s (N + 1)-spin class.

Example 3.3.4. In [10] it is also shown that the set of relations for
equivariant P1 and Witten’s 3-spin class coincide.

Remark 3.3.5. For nonequivariant P1 the theory does not apply since the
Frobenius manifold is semisimple at all points. There is a different way of
how to extract relations in this case, which we will study in Section 3.8.

Our main result is the following.

Theorem 3.3.6. For any two semisimple convergent CohFTs which are
not semisimple at all points of the underlying Frobenius manifold, the sets
of associated tautological relations coincide.

3The proof of Theorem 3.3.6 easily implies that for a CohFT the only possible singularities
of the R-matrix along D are poles.

4If the R-matrix were multivalued, we would need to work on a branched cover of U instead.
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Remark 3.3.7. In the proof of Theorem 3.3.6 we will first locally near
a smooth point on the discriminant identify canonical coordinates and
normalized idempotents. An important part of the proof is to show that
under this identification the quotient of corresponding R-matrices is holo-
morphic along the discriminant.

In [10] for the comparison of equivariant P1 and the A2-singularity
a different, more explicit identification of coordinates and vector fields
is chosen. Therefore, while with this identification the quotient of the
R-matrices is not holomorphic along the discriminant, there exists a holo-
morphic function ϕ such that RP1(z) = R(z)RA2(ϕz). This result depends
on the fact that the A2-theory has an Euler vector field.

3.4 Local extension

The proof of the following theorem will occupy this section. The content
of the proof is also used for proving Theorem 3.3.6.

Theorem 3.4.1. Let M be an N-dimensional semisimple Frobenius man-
ifold and let p be a smooth point of the discriminant of M such that m = 1

2

in Theorem 2.3.10. Then, after possibly shrinking M to a smaller neigh-
borhood of p, there exists a convergent CohFT with underlying Frobenius
manifold M .

We first study the consequences of Theorem 2.3.10 in more detail.
After possibly shrinking M , it gives us a basis of holomorphic vector
fields { ∂

∂t0
, ∂
∂t
, ∂
∂u≥3

}, where

∂

∂t0
=

∂

∂u1
+

∂

∂u2
,

∂

∂t
=

(
3

4
(u1 − u2)

) 1
3
(

∂

∂u1
− ∂

∂u2

)
. (10)

It is easy to see that these vector fields commute and therefore we can
integrate them to coordinates t0, t and u≥3. The discriminant D is then
locally given by the equation t = 0.

Notice that there is a root
√
t of t such that

∂

∂t
=
√
t

(
∂

∂u1
− ∂

∂u2

)
,

(
∂

∂t

)2

= t

(
∂

∂u1
+

∂

∂u2

)
.

Define holomorphic functions η0 and η1 by

η0 = η

(
∂

∂t0
,
∂

∂t0

)
, η1 = η

(
∂

∂t
,
∂

∂t0

)

and notice that

η

(
∂

∂t
,
∂

∂t

)
= η

(
∂

∂t
?
∂

∂t
,

N∑

i=1

∂

∂ui

)
= tη0.

Since η is nonsingular, η1 cannot vanish on the discriminant. The inverses
∆1, ∆2 of the norms of the first two idempotents are given by

∆1 =
2
√
t

η1 +
√
tη0

, ∆2 =
−2
√
t

η1 −
√
tη0

.
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We next choose roots
√

2
√
t,
√
−2
√
t and

√
η1. These induce roots of

∆1, ∆2, which we will use to define the normalized idempotents. Let Ψ0

be the block diagonal matrix with upper left block being




√
t√

2
√
t

−
√
t√

−2
√
t

1√
2
√
t

1√
−2
√
t


 (11)

and the identity matrix as the lower right block. For Ψ−1
0 the upper left

block is given by 


1√
2
√
t

√
t√

2
√
t

1√
−2
√
t

−
√
t√

−2
√
t


 . (12)

The matrix Ψ0 is the basis change from normalized idempotents to the
basis { ∂

∂t0
, ∂
∂t
, ∂
∂u≥3

}. In the A2-singularity case η0 = 0,
√
η1 = 1 and

√
∆≥3 = 1.
Let Ψ1 denote the basis change from the normalized idempotent basis

to a flat basis and define Ψ̃1 = Ψ1Ψ−1
0 .

Lemma 3.4.2. The basis change matrix Ψ̃1 is holomorphic along D.

Proof. By Theorem 2.3.10 it is enough to prove the same statement for
Ψ̃′ := Ψ′Ψ−1

0 where Ψ′ is the basis change from the normalized idempotent
basis to the basis { ∂

∂t0
, ∂
∂t
, ∂
∂u≥3

}. Since the basis changes leave all but the

first two idempotents invariant we will only need to consider the upper-left
2× 2 block of Ψ̃′. We factor this block into

( √
t

2
√
t

−
√
t

−2
√
t

1
2
√
t

1
−2
√
t

)(√
∆1√
2t

0

0
√

∆2√−2t

)(
1
√
t

1 −
√
t

)
,

a change from { ∂
∂t0

, ∂
∂t
} to the idempotents, a multiplication by a diagonal

matrix and the change back from the idempotents to { ∂
∂t0

, ∂
∂t
}. So we see

that the upper left block of Ψ̃′ has the form

η
− 1

2
1

(
a tc
c a

)
,

where

a =
1

2


 1√

1 +
√
t η0
η1

+
1√

1−
√
t η0
η1


 =1 +

3

8

η2
0

η2
1

t+O(t2)

c =
1

2
√
t


 1√

1 +
√
t η0
η1

− 1√
1−
√
t η0
η1


 =− 1

2

η0

η1
− 5

16

η3
0

η3
1

t+O(t2)

which are holomorphic along the discriminant.

We can repeat this setup for any other N -dimensional Frobenius man-
ifold satisfying the assumptions, in particular, as we will assume from now
on, for any Frobenius manifold underlying an N -dimensional convergent
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CohFT Ω2, such as an extension of the theory of the A2-singularity to N
dimensions using the construction of Example 3.1.6 repeatedly. By using
the coordinates t, t0, u≥3 we can identify a small neighborhood of p with a
small neighborhood of the origin of the convergent CohFT. Let us shrink
M accordingly. Notice that this isomorphism of complex manifolds, if the
third roots in (10) have been chosen compatibly, amounts, outside of the
discriminant, to identifying their canonical coordinates. We accordingly
identify normalized idempotents and thereby the tangent spaces that they
span.

This identification preserves the metric but not the quantum product
structure. In particular, the basis change Ψ2 from the normalized idempo-
tent basis to a flat basis of the CohFT in general does not agree with Ψ1.
We set Ψ̃2 = Ψ2Ψ−1

0 , which by Lemma 3.4.2 is also holomorphic along D.

Lemma 3.4.3. There exists a symplectic solution R1 of the flatness equa-
tion (8) for Ψ1 such that if R2 denotes the solution of (8) for Ψ2 used
for reconstructing the CohFT, the endomorphism R1R

−1
2 is holomorphic

(under the identifications we have made above).

Proof. For this proof let R1 and R2 denote R-matrices written in the
basis of normalized idempotents instead of the underlying endomorphism
valued power series. We set

Ri = Ψ−1
0 R̃iΨ0,

where Ψ0 is as in (11). We can write the flatness equations (8) as

[R̃i,Ψ0duΨ−1
0 ] + zΨ̃−1

i d(Ψ̃iR̃iΨ0)Ψ−1
0 = 0.

If R := R̃1R̃
−1
2 , these two differential equations combine to

0 = [R,Ψ0duΨ−1
0 ] + zΨ̃−1

1 d(Ψ̃1RΨ̃−1
2 )Ψ̃2. (13)

By Lemma 3.4.2 it is enough to show that there is a solution R of (13)
all of whose entries are holomorphic along the discriminant and which
satisfies the symplectic condition.

We analyze the entries of the ingredients in (13). For this we will
consider all matrices to consist of four blocks numbered according to

(
1. 2.
3. 4.

)
,

such that the first block has size 2×2. By Lemma 3.4.2 the matrices Ψ̃−1
i ,

Ψ̃i for i ∈ {1, 2} and therefore also the matrices Ψ̃−1
1 dΨ̃1 and (dΨ̃−1

2 )Ψ̃2 of
one-forms are holomorphic along D. The matrix (dΨ0)Ψ−1

0 has all blocks
equal to zero except for the first one, which is

dt

4t

(
1 0
0 −1

)
(14)

and the matrix Ψ0duΨ−1
0 is block diagonal with first block being

(
dt0 tdt
dt dt0

)
(15)
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and the other block being the diagonal matrix with entries du≥3. Fur-
thermore, because in general Ψ−1

1 dΨ1 is antisymmetric (as can be seen by
differentiating Ψt

1ηΨ1 = 1) and from (11), (12) and (14) we see that the
first block of Ψ̃−1

1 dΨ̃1 has the general form

(
x 0
0 −x

)
(16)

and the forth block is still antisymmetric. The same holds for (dΨ̃−1
2 )Ψ̃2.

We construct the coefficients of R inductively. Let us set

R(z) =

∞∑

i=0

Rizi

and Rijk for the entries of Ri. We assume that we have already constructed
Rj for j ≤ i satisfying the flatness equation and symplectic condition
modulo zi+1.

Because of (15), inserting ∂
∂t0

into the zi+1-part of (13) directly gives

equations for the off-diagonal blocks of Ri+1 in terms of holomorphic
functions.

Similarly, inserting ∂
∂u≥3

into the zi+1-part of (13) gives us holomor-

phic formulas for the off-diagonal entries of Ri+1 in the forth block. For
the diagonal entries of this block we instead insert ∂

∂t
into the zi+2-part of

(13) and because of the antisymmetry obtain that the first t-derivatives of
the diagonal entries are holomorphic. We can integrate them locally and
have an arbitrary choice of integration constants (ignoring the symplectic
condition for now).

It remains the analysis of the first block. For this it is useful to compute
the commutator

[(
Ri+1

11 Ri+1
12

Ri+1
21 Ri+1

22

)
,

(
0 t
1 0

)]
=

(
Ri+1

12 − tRi+1
21 t(Ri+1

11 −Ri+1
22 )

Ri+1
22 −Ri+1

11 tRi+1
21 −Ri+1

12 .

)

So the insertion of ∂
∂t

into the zi+1-part of (13) gives holomorphic formulas
forRi+1

11 −Ri+1
22 andRi+1

12 −tRi+1
21 . Because of (14) and (16) the ∂

∂t
insertion

into the zi+2-part of (13) shows that the first t-derivative of Ri+1
11 +Ri+1

22

is holomorphic and therefore this sum is holomorphic and we again have
the choice of an integration constant. Similarly, we find that

2t
∂

∂t
Ri+1

21 +Ri+1
21 .

is holomorphic in D and therefore Ri+1
21 is holomorphic up to a possible

constant multiple of t−
1
2 . Here, we have a unique choice of integration

constant giving a holomorphic solution.
In general the symplectic condition does not constrain the integration

constants of Ri+1 when i+ 1 is odd [7]. On the other hand, it completely
determines the integration constants of Ri+1 when i+1 is even. It is clear
that the solution determined by the symplectic condition is meromorphic
and hence by the above analysis is also holomorphic.
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Let R1 and R2 be as in the lemma. We define a new convergent
CohFT Ω3 by the R-matrix action Ω3 = (R1R

−1
2 )Ω2. We want to compare

this CohFT to the CohFT Ω1 obtained by the R-matrix action of R1 on
the trivial CohFT. Notice that Ω1 is possibly not well-defined along the
discriminant. The CohFTs Ω3 and Ω1 are very similar but the underlying
trivial theories do not agree.

Recall the description (9) of the reconstruction using the basis of nor-
malized idempotents. A local contribution at a vertex of color i for the
reconstruction of Ω3 is of the form

∆
2g−2+n

2
2i

∞∑

k=0

∆
k
2
2i

k!
π∗

(
n∏

j=1

αij

k∏

j=1

ψj(Id
i−(R−1

1 (ψj))
i)1Ω2

)
,

where π forgets the last k markings and αij are some formal series in ψj
whose coefficients are holomorphic functions on the Frobenius manifold.

To circumvent convergence issues, let v be a formal flat vector field
and let vµ and vi be the coordinates of v when written in a basis of flat
coordinates or in the basis of normalized idempotents, respectively. We
can further modify the CohFT by shifting along vψ:

Ω4
g,n(α1, . . . , αn) :=

∞∑

k=0

1

k!
π∗Ω

3
g,n+k(α1, . . . , αn, ψv, . . . , ψv) (17)

We obtain a well-defined convergent CohFT defined over the ring of power
series in the vµ. For Ω4 the local contribution at a vertex of color i is

∆
2g−2+n

2
2i

∞∑

k=0

∆
k
2
2i

k!
π∗

(
n∏

j=1

αij

k∏

j=1

ψj
[
Idi 1Ω2 − (R−1

1 (ψj))
i(1Ω2 − v)

])
.

Recall that the dilaton equation implies that

1

(1− a)2g−2+n
=

∞∑

k=0

1

k!
π∗

(
k∏

j=1

aψj

)
,

where a is a formal variable, or equivalently

1 =

∞∑

k=0

(1 + b)2−2g−n−k

k!
π∗

(
k∏

j=1

bψj

)
,

where b = a/(1 − a). We will apply this identity locally at every vertex.
At a vertex of color i we use −

√
∆2ivi for b. Then the local contribution

at a vertex of color i is

∆
2g−2+n

2
3i

∞∑

k=0

∆
k
2
3i

k!
π∗

(
n∏

j=1

αij

k∏

j=1

ψj
[
Idi−(R−1

1 (ψj))
i
]

(1Ω2 − v)

)
,

where
∆
−1/2
3i = ∆

−1/2
2i − vi.

Notice that now (again) the sum in k is finite in each cohomological degree.
Therefore we can specialize v. We will take v to the vector 1Ω2 − 1Ω1 ,
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which is holomorphic by Lemma 3.4.2, and thus vi = ∆
−1/2
2i −∆

−1/2
1i . In

this case the ∆3i specialize to ∆1i. We have therefore arrived exactly at
the reconstruction formula for Ω1. In particular, with the specialization
of v, Ω4 is the same as Ω1 and therefore Ω1 is also holomorphic along
the discriminant. Hence Ω1 is a suitable local extension of the Frobenius
manifold we started with to a convergent CohFT. The extension in not
unique but depends on a choice of integration constants.

3.5 Equivalence of relations

We want to prove Theorem 3.3.6 in this section.
First notice that the dimension of a convergent CohFT Ω can be in-

creased by one without changing the set of relations by the construction
of Example 3.1.6. So we can assume that the CohFTs we are trying to
compare have the same dimension.

Next, recall from Section 3.3 that the tautological relations of a semi-
simple convergent CohFT Ω are defined via coefficients of the part of the
Givental-Teleman classification singular in the discriminant. Therefore
the relations do not change when removing the codimension two set of
singular points of the discriminant from the Frobenius manifold underly-
ing Ω.

In order to prove Theorem 3.3.6, it is therefore enough to show that
the relations coincide for two semisimple, equal dimensional convergent
CohFTs Ω1, Ω2 such that each Frobenius manifold contains a smooth
point of the discriminant and is small enough for Theorem 3.4.1 to apply
directly to Ω1.

By the proof of Theorem 3.4.1 an extension of the Frobenius manifold
underlying Ω1 can be constructed from Ω2 by a holomorphic R-matrix
and a holomorphic shift. To prove Theorem 3.3.6 it therefore suffices to
show that these two operations preserve tautological relations and that
the integration constants can be chosen such that the constructed CohFT
coincides with Ω1. We now prove these statements.

Lemma 3.5.1. The R-matrix action by a holomorphic R-matrix pre-
serves tautological relations.

Proof. Let Ω′ be obtained from Ω from the R-matrix action of R. Then
in the description of the R-matrix action in Section 3.2 all arguments are
holomorphic vector fields on the Frobenius manifold with values in power
series in ψ-classes. Ω′g,n in each cohomological degree is obtained by a
finite sum of push-forwards under the gluing map of products of Ω (with
possibly additional markings) multiplied by monomials in ψ classes and
with holomorphic vector fields as arguments. Therefore any singularities
of the reconstruction of Ω′ are the result of singularities in the reconstruc-
tion of Ω. So we can write the relations of Ω′ from vanishing singularities
in terms of the general relations from Ω as of Definition 3.3.1. By the sta-
bility condition in Definition 3.3.1 we can also express a general relation
of Ω′ in terms of relations from Ω.

Since R-matrices are power series starting with the identity matrix, by
using R−1 we can also write the relations of Ω in terms of relations from
Ω′.
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The shift-construction (17) clearly expresses any relation from Ω4
g,n in

terms of relations from Ω3
g,n+m for various m ≥ 0.

We now finally want to show that taking the R-matrices of Ω1 and Ω2

is a suitable choice for R1 and R2 in Lemma 3.4.3. We will argue that
otherwise Ω1 or Ω2 will not be defined at the discriminant.

For simplicity we will make use of the following stability result. It
should also be possible to use estimates or congruence properties of inter-
section numbers instead.

Theorem 3.5.2 (Boldsen [1], Looijenga [12]). For k < g
3

the vector

space H2k(Mg,n) is freely generated by the set of monomials in the classes
κ1, . . . , κk, ψ1, . . . , ψn of cohomological degree 2k.

We use the local coordinates t, t0, u≥3 from the previous section. Let
i be the lowest degree in z where R is not holomorphic. The non-
holomorphic part is a constant multiple of the block-diagonal matrix with
upper-left block (

0 t1/2

t−1/2 0

)

and zeros everywhere else. Let us consider the ψi1-coefficient of

Ω1
g,1

(
∂

∂t0

) ∣∣∣
Mg,1

− Ω2
g,1

(
∂

∂t0

) ∣∣∣
Mg,1

for large g. Its lowest order term in t is up to nonzero factors given by

t−
1
2
√
t

(√
2
√
t
2g−2+1−1

−
√
−2
√
t
2g−2+1−1

)

= 2g−1
(

(
√
t)g−1 − (−

√
t)g−1

)

and therefore not holomorphic in t for even g. By Theorem 3.5.2 this is
impossible.

3.6 Global extension

The local extension Theorem 3.4.1 leaves open the question when a se-
misimple Frobenius manifold can (globally) be extended to a CohFT. In
Section 3.7.2 we will see that the restrictions put on integration constants
of the R-matrices in Lemma 3.4.3 do not always fit together globally.

Conjecture 3.6.1. Let M be an N-dimensional semisimple Frobenius
manifold such that it possesses a holomorphic genus one potential dG.
Then there exists a convergent CohFT with underlying Frobenius manifold
M .

On the other hand, when the Frobenius manifold is homogeneous such
an extension to a CohFT exists by the following simple argument. There
is a unique homogeneous solution to the flatness equation (8) and by con-
struction it is meromorphic along the discriminant. Since by Lemma 3.4.3
all possible solutions are either holomorphic in the discriminant or are
multivalued, the homogeneous solution has in fact to be holomorphic.
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3.7 Examples

3.7.1 Extending the comparison to non-smooth points on
the discriminant

We want to illustrate how the comparison between relations in the proof
of Theorem 3.3.6 via an identification of coordinates and vector fields, an
R-matrix action and a shift, does not directly extend to give a way to
explicitly write the relations near a singular point of the discriminant in
terms of the A2- (3-spin) relations.

Let us consider the comparison between the A2×A1 and A3 singulari-
ties. We will see that already the identification between points and vector
fields behaves badly. This is the simplest example we can consider since
in two dimensions the discriminant locus is a union of parallel lines and
in particular is non-singular.

The Frobenius manifold of the A3-singularity x4/4 = 0 is based on the
versal deformation space

f(x) =
x4

4
+ t2x

2 + t1x+ t0.

Here t0, t1 and t2 are coordinates on the Frobenius manifold. The ring
structure is given by the Milnor ring

C[t0, t1, t2][x]/f ′(x),

where x = ∂
∂t1

. The discriminant of the minimal polynomial f ′ of x is

−32t32−27t21 and therefore the discriminant locus has a cusp at t1 = t2 = 0.
The metric is in the basis {1, x, x2} given by




0 0 1
0 1 0
1 0 −2t2


 .

Therefore the basis {1, x, x2} is flat up to a determinant one basis change.
We go to a sixfold ramified cover of the Frobenius manifold on which

we can define the critical points ζ1, ζ2, ζ3 of f(x) as holomorphic functions.
Let u1, u2, u3 be the corresponding critical values. Part of the discriminant
locus is described by the equation ζ1 = ζ2. Locally we use φ := ζ1− ζ2, ζ3
and t0 as new coordinates. Reexpressing in terms of the coordinates gives

ζ1 = −1

2
ζ3 +

1

2
φ,

ζ2 = −1

2
ζ3 − 1

2
φ,

u1 = t0 +
3

64
ζ4
3 −

5

32
ζ2
3φ

2 +
1

8
ζ3φ

3 − 1

64
φ4,

u2 = t0 +
3

64
ζ4
3 −

5

32
ζ2
3φ

2 − 1

8
ζ3φ

3 − 1

64
φ4,

u1 − u2 =
1

4
ζ3φ

3,

u3 = t0 − 3

8
ζ4
3 +

1

8
ζ2
3φ

2.
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The idempotents are given by

∂

∂u1
=

(x− ζ2)(x− ζ3)

(ζ1 − ζ2)(ζ1 − ζ3)
=
x2 + (− 1

2
ζ3 + 1

2
φ)x− 1

2
ζ2
3 − 1

2
ζ3φ

− 3
2
ζ3φ+ 1

2
φ2

,

∂

∂u2
=

(x− ζ1)(x− ζ3)

(ζ2 − ζ1)(ζ2 − ζ3)
=
x2 + (− 1

2
ζ3 − 1

2
φ)x− 1

2
ζ2
3 + 1

2
ζ3φ

3
2
ζ3φ+ 1

2
φ2

,

∂

∂u3
=

(x− ζ1)(x− ζ2)

(ζ3 − ζ1)(ζ3 − ζ2)
=
x2 + ζ3x+ 1

4
ζ2
3 − 1

4
φ2

9
4
ζ2
3 − 1

4
φ2

so that they become after normalization

x2 + (− 1
2
ζ3 + 1

2
φ)x− 1

2
ζ2
3 − 1

2
ζ3φ√

− 3
2
ζ3φ+ 1

2
φ2

,
x2 + (− 1

2
ζ3 − 1

2
φ)x− 1

2
ζ2
3 + 1

2
ζ3φ√

3
2
ζ3φ+ 1

2
φ2

,

x2 + ζ3x+ 1
4
ζ2
3 − 1

4
φ2

√
9
4
ζ2
3 − 1

4
φ2

.

For A2 × A1, let us assume that u3 corresponds to the A1-direction
and that the norm of the idempotent in that direction is one. We can
write

u1 = x0 − 2

3
(−x1)3/2, u2 = x0 +

2

3
(−x1)3/2,

where x0 and x1 are flat coordinates corresponding to t0 and t1 in Exam-
ple 2.2.2.

We should therefore identify

φ
!
= −2

(
2

3

)1/3

ζ
−1/3
3

√
−x1.

Let us consider how we identify the A3-singularity basis {1, x, x2} and
the flat basis of A2 × A1 via the identification of their normalized idem-
potents. If we write the identity of A2 × A1 in terms of {1, x, x2}, the
x2-coefficient is

√
2
√−x1√

− 3
2
ζ3φ+ 1

2
φ2

+

√
−2
√−x1√

3
2
ζ3φ+ 1

2
φ2

+
1√

9
4
ζ2
3 − 1

4
φ2

=
2ζ

1/6
3√−3cζ3 + cφ

+
2ζ

1/6
3√

3cζ3 + cφ
+

2√
9ζ2

3 − φ2
,

where

c = −2

(
2

3

)1/3

.

The coefficient is well-defined on generic points of the part ζ1 = ζ2 (φ =
0) of the discriminant, but when fixing some φ 6= 0 the function has a
singularity at ζ3 = 0.
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3.7.2 Obstructions to extending R-matrices

We want consider the class of two-dimensional Frobenius manifolds with
flat coordinates t0, t, flat metric

η =

(
0 1
1 0

)

and quantum product (
∂

∂t

)2

= f
∂

∂t0

for a holomorphic function f(t). The corresponding Gromov-Witten po-
tential is

1

2
t20t+ F,

where F (t) is a third anti-derivative of f(t).
The differential equation satisfied by the R-matrix in flat coordinates

can be made explicit:

[
R,

(
0 f
1 0

)]
+ zṘ+ z

ḟ

4f

(
−1 0
0 1

)
R = 0 (18)

We first want to show that for any solution R, the z1-coefficient is not
holomorphic for all f . For this we set

R =

(
1 + az 0 + bz
0 + cz 1 + dz

)
+O(z2).

From (18) in degree z1 we obtain

b− fc− ḟ

4f
= 0, a = d.

From (18) in degree z2, we see that a = d is an integration constant. We
obtain an interesting differential equation for c:

2f ċ+ ḟ c+
f̈

4f
− 5ḟ2

16f2
= 0

If we substitute

c =
γ

f
− 5

48

ḟ

f2
,

it becomes

2γ̇ − ḟ

f
γ +

f̈

24f
= 0.

So γ is determined up to a multiple of a root of f and in particular, if f has
somewhere a simple zero, there exists at most one solution meromorphic
on all of C2.

If f is linear, γ = 0 is clearly a holomorphic solution. If f is quadratic
with non-vanishing discriminant, there is still a holomorphic solution. For
example for

f(t) = t(t+ 1)
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the solution is

γ =
t

6
+

1

12
.

In larger degree, we stop having meromorphic solutions. In the example

f(t) = t(t2 − 1),

after substituting

γ = fδ +
t

8
,

we arrive at the differential equation

(t2 − 1)2tδ̇ + (3t2 − 1)δ +
1

8
= 0.

We see that δ is meromorphic in t if and only it is so in u := t2. In the
new variable the differential equation is

4u(u− 1)δ′ + (3u− 1)δ +
1

8
= 0.

From generic semisimplicity we also know that δ has to be holomorphic
except for u = 0 and u = 1. Around u = 0 and u = 1 there are unique
meromorphic solutions

1

8

∞∑

i=0

4i+ 3

4i+ 1
ui, − 1

16

∞∑

i=0

4i+ 3

4i+ 2
(1− u)i,

but these obviously do not agree.
We now want to check that the corresponding genus one potential will

also be singular. For this we look at the case when a = d = 0 and compute
the codimension one part of the reconstructed CohFT on M1,1 with an
∂
∂t

-insertion. From the trivial graph, we obtain the contribution

−2

(
γ +

7

48

ḟ

f

)
ψ1 + 2

(
γ − 5

48

ḟ

f

)
κ1

and in addition we have the contribution

2γ +
2

48

ḟ

f

of the irreducible divisor δ0. From
∫

M1,1

ψ1 =

∫

M1,1

κ1 =
1

12

∫

M1,1

δ0 =
1

24

we see that the correlator equals γ, which is not holomorphic on all of the
Frobenius manifold.
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3.8 Other relations from cohomological field the-
ories

For a convergent CohFT depending on additional parameters there are
possibilities to obtain tautological relations from the reconstruction, which
are different from Definition 3.3.1. We want to study here the example of
the equivariant Gromov-Witten theory of a toric variety, which is depen-
dent on equivariant and Novikov parameters.

Let T = (C∗)m and let H∗T (pt) = H∗(BT ) = C[λ1, . . . , λm] be the
T -equivariant cohomology ring of a point. Let X be an m-dimensional
smooth, toric variety with a basis {p1, . . . , pN} of its cohomology, which
we can also lift it to a basis in T -equivariant cohomology. Let β1, . . . , βN
be the dual basis in homology. The Novikov ring is a completion of the
semigroup ring of effective classes β ∈ H2(X;Z). We use qβ to denote the
generator corresponding to a β ∈ H2(X;Z).

A family of N -dimensional CohFTs on the state space H∗C∗(X) can be
defined by setting

Ωg,n(α1, . . . , αn) =
∑

β

qβp∗

(
n∏

i=1

ev∗i (αi) ∩ [Mg,n(X;β)]vir
)
,

where the sum ranges over all effective classes β ∈ H2(X;Z), p is the
projection from the moduli space of stable maps to Mg,n and evi is
the ith evaluation map. From [9] it follows that the sum over β con-
verges in a neighborhood of the origin and that the CohFT induces a
convergent CohFT. Iritani also shows that this convergent CohFT is se-
misimple. We can view its classes as holomorphically varying in the pa-
rameters λ1, . . . , λm and parameters q1, . . . , qN1 corresponding to a nef
basis of H2(X;Z). There are flat coordinates t1, . . . , tN1 of the Frobenius
manifold corresponding to the Poincaré dual basis of H2(X).

For any choice of λ1, . . . , λm, q1, . . . , qN1 such that the discriminant
does not vanish identically, as before, we can define relations by studying
the behavior of the Givental-Teleman reconstruction near the discrimi-
nant, and we know from Theorem 3.3.6 that these follow from Pixton’s
relations. Now we can however also allow to let the parameters λi, qi vary
and there might be additional pole cancellation in the reconstruction for-
mula.5 For example there might be terms having poles in the equivariant
parameters. We want to show now that these relations also follow from
Pixton’s relations.

We consider a function f on the space of equivariant and torus pa-
rameters times the Frobenius manifold with values in the strata algebra
Sg,n which is obtained from the reconstruction. We need to show that
the projection f̄ of f to the space of functions with values in Sg,n/Pg,n,
the strata algebra divided the ideal of the relations of Pixton, becomes
holomorphic. By Theorem 3.3.6 we know that f̄ is holomorphic for any
fixed values of λi and qi such that the discriminant is not identically zero
on the Frobenius manifold. We can conclude if we can show that the set

5To make this statement precise one needs to know that the R-matrix depends on the
parameters λi, qi also meromorphically. This follows from mirror symmetry [9].
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of such bad λi, qi in the space of all parameters is of codimension at least
2.

From the divisor equation it follows that all structure constants and
therefore also the discriminant depend on qi and the coordinate ti only in
the combination qie

ti . Therefore the locus of bad parameters is a product
L×Q (intersected with the domain of convergence), where L ⊆ Cm and
Q ⊆ CN1 correspond to the λi and qi respectively, and where Q is a
product of N1 factors which are either {0} or all of C. If at least two
factors of Q are {0}, the bad locus is of codimension at least 2. If there
is exactly one factor of {0}, since the equivariant cohomology, which we
obtain by setting all qi to zero, is semisimple, L is of codimension at least
one and we are also done in this case. Finally the case that Q has no
factor {0} means that the theory is not semisimple for any choice of qi
which clearly contradicts semisimplicity of the non-equivariant theory.

Remark 3.8.1. A similar strategy should also work for toric orbifolds. The
special case of P1 with two orbifold points is used in [2].
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